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A B S T R A C T

Automated recommender systems are used to help people find inter-
esting content or persons in the vast amount of information available
via the internet. There are different types of recommender systems,
for example collaborative filtering systems and content-based recom-
mender systems. However, all recommender systems share a common
trait: in order to generate personalized recommendations, they require
information on the attributes, demands, or preferences of the user. Typ-
ically, the more detailed the information related to the user is, the
more accurate the recommendations for the user are. Service providers
running the recommender systems collect large amounts of personal
information to ensure accurate recommendations. This data must be
protected to increase the privacy of all participating users.

Privacy is typically enhanced through one (or more) of three meth-
ods: (1) decentralization, (2) introduction of uncertainty, and (3) secure
computation.

Decentralization aims to remove the central service provider and
gives more control to the individual users. However, decentralized sys-
tems cannot guarantee the availability of data as users go online and
offline as they please. Furthermore, no single entity is responsible for
data that does not belong to a specific user (such as item data).

Uncertainty is typically introduced by adding random noise to the
data, which provides a mask over the user information. However, this
noise negatively impacts the accuracy of the recommender system.
When the users introduce their own noise, then the system consists
mainly of noise. To preserve accuracy, only the service provider in-
troduces noise, therefore no privacy is achieved against the service
provider.

Secure computation protects the data that is used during the com-
putation of recommendations by providing confidentiality, both at rest
and during computation. However, it suffers from a large computa-
tional overhead, due to the use of cryptography and secure multi-party
protocols.

In this thesis we focus on the use of secure computation to enhance
the privacy of recommender systems, where we strive to make the
computations as efficient as possible. To provide this, we build special-
ized secure computation protocols based on homomorphic encryption
schemes and secure multi-party computation. Each protocol is tailored
to the specific problem that is addressed, with a minimum of expens-
ive operations and interactions. These protocols address the following
challenges: (1) fostering cooperation between competing service pro-
viders, (2) coping with the unavailability of users, and (3) dealing with
malicious intent by the users.
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Cooperating service providers are able to leverage each others data-
bases to provide better recommendations. However, privacy of users
and secrecy of a service provider’s database normally prevents compet-
ing service providers from collaborating based on sharing their plain-
text databases. We provide a secure protocol that allows competing
service providers to collaborate and share their respective databases of
information, without leaking the database to the competitor.

Most existing secure computation protocols for recommender sys-
tems require interaction between the service provider and its users,
which makes unavailability of users a serious issue. Secure computa-
tion protocols that do not rely on the availability of users are therefore
preferred. We contribute a secure protocol that allows users to be un-
available during the computation of a recommendation for a specific
user (this specific user is still required to be online). The typical ap-
proach to deal with unavailable users is to introduce a second (inde-
pendent) server, which needs to be (partly) trusted by the users. Our
protocol does not rely on an additional server, but instead relies on
existing trust relationships (e. g. friendship) between users who wish
to share their preferences.

In general, secure computation protocols for recommender systems
assume honest behaviour of participating users. However, this assump-
tion is not valid in most cases, as users attempt to exploit the recom-
mender system for their own gain. More robust protocols for recom-
mender systems are preferred. We present a secure framework for re-
commender systems that can cope with malicious user behaviour. The
framework consists of two protocols for users to update ratings and
retrieve recommendations. The framework can be instantiated with
different types of recommender systems.
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S A M E N VAT T I N G

Geautomatiseerde aanbevelingssystemen worden gebruikt om mensen
te helpen met het vinden van interessante inhoud of personen in de
grote hoeveelheid beschikbare informatie op het internet. Er zijn ver-
schillende soorten aanbevelingssystemen, bijvoorbeeld collaboratieve
filtering systemen en inhoud gebaseerde aanbevelingssystemen. Ech-
ter, alle aanbevelingssystemen delen een gemeenschappelijk kenmerk:
om gepersonaliseerde aanbevelingen te genereren, vereisen zij infor-
matie over de attributen, eisen of voorkeuren van de gebruiker. In het
algemeen, hoe gedetailleerder de informatie gerelateerd tot de gebrui-
ker is, hoe accurater de aanbevelingen voor de gebruiker zijn. Servi-
ceaanbieders die de aanbevelingssystemen opereren verzamelen grote
hoeveelheden persoonlijke informatie om accurate aanbevelingen te
waarborgen. Deze informatie dient beschermt te worden om de pri-
vacy van alle deelnemende gebruikers te verhogen.

Privacy wordt vaak verhoogd door één (of meer) van deze drie me-
thoden: (1) decentralisatie, (2) introductie van onzekerheid en (3) be-
veiligde berekeningen.

Decentralisatie heeft als doel om de serviceaanbieder te verwijderen
en meer controle te geven aan de individuele gebruikers. Echter, ge-
decentraliseerde systemen kunnen de beschikbaarheid van informatie
niet garanderen, want gebruikers kunnen online en offline gaan wan-
neer ze willen. Verder is er geen enkele partij verantwoordelijk voor
informatie die niet aan een specifieke gebruiker toebehoord (zoals ar-
tikel informatie).

Onzekerheid wordt normaal geïntroduceerd door willekeurige ruis
aan de informatie toe te voegen, wat dan de gebruikers informatie
verbergt. Echter, deze ruis beïnvloedt de accuraatheid van het aanbe-
velingssysteem op een negatieve manier. Wanneer gebruiker hun eigen
ruis toevoegen, dan bestaat het systeem voornamelijk uit ruis. Om de
accuraatheid te waarborgen, voegt alleen de serviceaanbieder ruis toe,
daarom is er geen privacy tegen over de serviceaanbieder.

Beveiligde berekeningen beschermen de informatie die wordt ge-
bruikt tijdens het uitrekenen van de aanbevelingen door de vertrou-
welijkheid van informatie te verstrekken, zowel tijdens de opslag als
de berekening. Echter, hebben ze een grote overhead door het gebruik
van cryptografie en beveiligde protocollen met meerdere partijen.

In dit proefschrift concentreren wij ons op het gebruik van bevei-
ligde berekeningen om de privacy in aanbevelingssystemen te verho-
gen, waar we streven de berekeningen zo efficiënt mogelijk te maken.
Om dit te realiseren, bouwen we specifieke beveiligde protocollen ge-
baseerd op homomorfe versleuteling en beveiligde berekeningen met
meerdere partijen. Elk protocol is afgestemd op het specifieke pro-
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bleem dat wordt aangepakt met een minimum aan dure berekeningen
en interacties. Deze protocollen pakken de volgende uitdagingen aan:
(1) het bevorderen van de samenwerking tussen rivaliserende service-
aanbieders, (2) omgaan met de onbeschikbaarheid van gebruikers en
(3) omgaan met kwaadaardige bedoelingen van de gebruikers.

Samenwerkende serviceaanbieders zijn in staat elkaars database te
gebruiken om betere aanbevelingen te doen. Echter, de privacy van
gebruikers en de geheimhouding van de database van de serviceaan-
bieder houden normaal gesproken de samenwerking van serviceaan-
bieders op basis van database uitwisselingen tegen. Wij leveren een
beveiligd protocol dat toestaat dat rivaliserende serviceaanbieders sa-
menwerken en hun respectievelijke databases met informatie te delen,
zonder daarbij de database aan de rivaal te onthullen.

De meeste bestaande beveiligde berekening protocollen voor aanbe-
velingssystemen vereisen interactie tussen de serviceaanbieder en zijn
gebruikers. Dit maakt onbeschikbaarheid van de gebruikers een seri-
eus probleem. Beveiligde berekening protocollen die niet rekenen op
de beschikbaarheid van gebruikers worden geprefereerd. Wij dragen
een beveiligd protocol bij dat het toestaat dat gebruikers niet beschik-
baar zijn tijdens de berekening van een aanbeveling voor een specifieke
gebruiker (deze specifieke gebruiker moet nog wel beschikbaar zijn).
The standaard oplossing om met de onbeschikbaarheid van gebruikers
om te gaan is het introduceren van een tweede (onafhankelijke) server.
Deze dient (deels) vertrouwd te worden door de gebruikers. Ons pro-
tocol hangt niet af van een tweede server, maar hangt in plaats daarvan
af van de bestaande vertrouwens relaties (e. g. vriendschappen) tussen
gebruikers die hun voorkeuren willen delen.

Over het algemeen nemen beveiligde berekening protocollen aan dat
deelnemende gebruikers zich betrouwbaar gedragen. Echter is in de
meeste gevallen deze aanname niet geldig, wanneer gebruikers pro-
beren het aanbevelingssysteem voor hun eigen gewin uit te buiten.
Robuustere protocollen voor aanbevelingssystemen zijn gewenst. We
presenteren een beveiligd framework voor aanbevelingssystemen dat
om kan gaan met kwaadaardig gedrag van gebruikers. Het framework
bestaat uit twee protocollen voor gebruikers om beoordelingen up te
daten en aanbevelingen op te halen. Het framework kan met verschil-
lende soorten aanbevelingssystemen geïnstantieerd worden.
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1I N T R O D U C T I O N

1.1 motivation

Online applications are an important part of daily life for millions of
users. People consume media (Youtube, Flickr, LastFM), do their shop-
ping (Amazon, Ebay), and interact (Facebook, Gmail) online. Because
the range and amount of content that is offered to users is often huge,
automated recommender systems are employed. By providing person-
alized suggestions, these systems can help people find interesting me-
dia, boost sales through targeted advertisements, or help people meet
new friends. Because of their automated nature, recommender systems
can meet the demands of large online applications that operate on a
global scale.

All recommender systems share a common trait: in order to gen-
erate personalized recommendations, they require information on the
attributes, demands, or preferences of the user. Typically, the more
detailed the information related to the user is, the more accurate the
recommendations for the user are. Service providers running the re-
commender systems collect information where possible to ensure ac-
curate recommendations. The information supplied can either be auto-
matically collected, or specifically provided by the user. Automatically
collected information is the result of users interacting with the recom-
mender systems and making choices based on recommendations. For
example, video views on Youtube are used to automatically present
a selection of recommended similar videos (recommendations for you).
Based on purchases by other users, items on Amazon are accompanied
by package deals (frequently bought together) or related items (customers
who bought this item also bought). Based on your friends and social in-
teractions, Facebook suggests new friends to make. LinkedIn, based
on a user’s CV and connections, recommends interesting companies,
job offers, and news. Vice-versa, LinkedIn also recommends people to
recruiters posting new job openings. Users can also explicitly provide
information. In this way, users build their own profile specifying their
likes and dislikes, or containing general information (such as age and
gender) about themselves. For example, Youtube allows users to spe-
cify their favorites. Facebook allows listing profile information as well
as interests.

However, potential threats to user privacy are often underestimated.
Users usually do not take the time to fully understand the privacy
policies and its implications, while service providers aim to not bother
users with the details of such policies. As such, the user often does not
have a good picture of his level of privacy with the service provider.

1



2 introduction

Furthermore, the more detailed the information related to the user is,
the larger the threat to the user’s privacy is. In order to enhance their
recommender systems, service providers are collecting and consolidat-
ing more and more information. For example, in recent privacy policy
updates Google stated that they consolidate information from all their
services to a single profile. Facebook continues to expand its reach
around the internet, giving the ability to share more and like almost
everything. Information might be abused by the service provider, sold
to a third party, or leaked by a hacker. This data must be protected to
increase the privacy of all participating users.

Lam et al. [56] note that the information the user shares with the ser-
vice provider to create useful recommendations, also leads to higher
risks re-identification of the user. Indeed, the information published by
Netflix as part of their recommender systems prize, though anonym-
ized, allowed for re-identification [68]. Narayanan and Shmatikov linked
the anonymized records to publicly available records (such as IMDb)
based on rating similarity and time of rating. If two records give a sim-
ilar rating to a movie around the same time, they are likely to be from
the same person. A higher number of similar movie ratings (in rating
and in time) increases the confidence of the link between the records.

1.2 user privacy

The word privacy has many subtly different meanings. We give an
overview of the privacy notions that are most relevant for recommender
systems. On the internet, privacy revolves mainly around information
privacy. Kang [51] used the wording of the Information Infrastructure
Task Force (IITF), as cited below:

Information privacy is “an individual’s claim to control the
terms under which personal information — information
identifiable to the individual — is acquired, disclosed or
used.”

Note that the focus of information privacy is on the control of the
individual. Weiss [87] stated that on the Web, privacy is maintained by
limiting data collection, hiding users’ identities and restricting access
to authorized parties only. In practice, information and identity often
become closely linked and visible to large groups of people. Profiles
may be publicly visible, comments can be seen by all viewers of a con-
tent item, and some sites list the last users to visit a particular page. It
becomes harder for a user to monitor and control his personal inform-
ation, as more of it becomes available online. This problem mainly ap-
plies to systems where the user logs in to an account, and where tools
are available to express a user’s preferences, such as recommender sys-
tems.

When using recommender systems (and other online applications),
users generally share a lot of (personal) information. Whether it is
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uploading ratings or comments, posting personal information on a
profile, or making purchases, information is always shared within a
particular scope [72]. Privacy involves keeping a piece of information
in its intended scope. This scope is defined by breadth (the size of the
audience), depth (extent of usage allowed), and lifetime (storage dura-
tion). When a piece of information is moved beyond its intended scope
in any of these dimensions (be it accidentally or maliciously), a privacy
breach occurs. So, a breach may occur when information is disclosed to
a party for whom it was not intended, when information is abused for
a different purpose than was intended, or when information is stored
beyond its intended lifetime.

The concept of information privacy is strongly related to the notion
of confidentiality, from the field of information security, but not to be
used interchangeably. Information privacy focusses on the individual
who is the subject of said information, the effects that disclosure have
on this person, and his or her control and consent. Confidentiality is
concerned with the secrecy of individual pieces of information. In this
thesis, the focus will lie on preventing unwanted disclosure and usage
of information, but not on the effects on the person. The focus on
confidentiality implicitly defines a scope for pieces of information. This
gives a solid, but static, expectation of privacy to the user.

1.3 overview of recommender systems

In this section, we give an overview of the different types of recom-
mender systems and their relation to user privacy. A recommender
system provides a set of items (e.g. content, solutions, or other users)
that is most relevant to a particular user of the system. Typically, re-
commender systems achieve this by predicting relevance scores for all
items that the user has not seen yet. Items that receive the highest
score get recommended (typically the top-N items, or all items above
a threshold t). The prediction is made by considering both the traits
of the item and user. Typically, systems look at similarities between
items, similarities between users, or relations between particular types
of items and particular types of users. The performance of a recom-
mender system is determined by the recommendation accuracy, i.e.
the error between given and expected results.

Adomavicius and Tuzhilin [10] give an overview of the state of the
art in recommender systems and possible extensions. They list only
the three popular types of that time: collaborative filtering, content-
based, and hybrid. In their list, the hybrid type is a combination of
the two other types. They purposely omitted the other types of recom-
mender systems that were not popular. We make a different distinction
with four core recommender system types, taking the first two types
of Adomavicius and Tuzhilin and adding two less popular, but im-
portant, types. The four core types represent the different approaches
to generating recommendations and are also based around different
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information. Thus the core types have a significantly different impact
on the privacy of the user. Possibly, these core types can be augmented
with additional information. We list the following core recommender
system types:

collaborative filtering : One of the first collaborative filtering
recommender systems is Tapestry, by Goldberg et al. [41]. This
system was designed to retrieve email messages from Usenet
mailing lists, relevant to a user’s particular interests. Goldberg
et al. observed that conventional mailing lists are too static, and
rarely form a perfect match to a user’s demands. Tapestry relies
on what the authors termed collaborative filtering techniques, which
are still widely used today. In collaborative filtering, each user
rates content items. These ratings determine similarity between
either users (similar users like similar items) or items (users like
items similar to highly rated items). Different metrics exist to
compute similarity. Recommended for the current user are those
items that are rated highest by his most similar peers, or contain
those items that are rated most similar to his favourite items. Col-
laborative filtering relies on the personal rating information of a
lot of users. To compute recommendations, the data of every user
in the system is used. Collaborative filtering is therefore very pri-
vacy invasive. The privacy impact is somewhat mitigated by the
fact that the recommendations are based on the aggregate of (po-
tentially) a lot of users. However, auxiliary information [26] and
users with eclectic tastes [76] still pose risks to privacy.

content-based : Content-based recommender systems use item sim-
ilarity to determine recommendations. Unlike the collaborative
filtering method, item similarity is computed by item meta-data.
Examples of meta-data are, kitchen for restaurants, genre for
movies, and artist for music. Recommended are those items that
are most similar to the user’s favourite items. An example of a
content-based recommender system is Newsweeder, by Lang [57].
Since the meta-data on which the item similarity is based is
generally public information, no privacy concerns are associated
with this information (still service providers might like to keep
this secret). However, to compute the recommendations also the
ratings of the user are required. This information is privacy sens-
itive. Because no private information from other users is used,
the privacy impact is limited to the service provider and not to
other users.

demographic : When detailed information about the user’s prefer-
ences is not available, demographic information can lead to some-
what personalized recommendations. Grundy, by Rich [80], is
an example of this. Demographic information may include age,
gender, country of residence, education level, etc. The demograph-
ic information is matched to a stereotype, and the items attached
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to this stereotype are recommended. Personalization for the user
is limited due to the generalization to a stereotype. It is possible
to generalize this approach to categories (instead of demograph-
ics). For example, users can be categorized based on their ill-
ness in medical recommender systems. Generally, the informa-
tion about the preferences of a certain demographic is public
information. However, the categorization of a user to a certain
demographic is based on personal information. Even the demo-
graphic that a user belongs to is considered to be personal in-
formation. Therefore, this information should be kept private
from the service provider. There is no privacy impact on other
users.

knowledge-based : When requiring a recommendation, the user
enters his preferences in the recommender system. The system
then outputs a (number of) potential recommendations based on
(expert) knowledge contained in the system. Possibly, the user
can give feedback and the recommendation is refined. After a
few iterations, the recommendation is tailored to the user. En-
tree [23] is an example of such a system, built to help diners find
a suitable restaurant. In learning knowledge-based recommender
systems, feedback from the user is fed back into the system to
add to the knowledge [62]. The knowledge in a knowledge-based
recommender system can either be public or private information.
In the case of a learning system, the feedback of users is gener-
ally considered to be private information. This has implications
on the privacy of users, as the knowledge that is build up is a
combination of a lot of users and the privacy has to be respected
for all users. Furthermore, the preferences that are used to de-
termine the recommendations are personal information. These
preferences should be kept private from the service provider.

Collaborative filtering, while being the most popular recommender
system type, also has the highest potential impact on privacy. The rat-
ings of a user are exposed to the service provider and to other users.
Knowledge-based recommender systems also potentially leak personal
information to other users. Choices that are made by users can be fed
back into the system and are therefore exposed to other users and the
service provider. The current recommendation preferences are also ex-
posed to the service provider. Both content-based and demographic
recommender systems do not expose personal information to other
users. However, the content-based recommender system still exposes
ratings to the service provider and the demographic recommender sys-
tem exposes personal categorical information to the service provider.

The additional information that can be used to augment these core
types can broadly be categorized in augmenting with more personal
information and augmenting with additional recommender systems.
For example, information about the context of a request can be added
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to the recommender system to increase its accuracy on a per request
basis [11]. Information about the social ties of a user can also be used
to improve the recommendations [54]. This additional information is
also subject to exposure and thus to privacy concerns by the user.

Recommender systems can also be augmented with other recom-
mender systems. This can be done with the same [82] or different [24]
types of recommender systems. The idea is that multiple recommender
systems can make decisions on different data or with different train-
ing parameters to generate different opinions that can strengthen each
other to improve recommender accuracy. These other recommender
systems naturally also require input data and enlarge the exposure
surface for the user.

1.4 methods for enhancing privacy

In the case of recommender systems, privacy is typically enhanced
through one (or more) of three methods: (1) decentralization, (2) intro-
duction of uncertainty, and (3) secure computation.

Decentralization aims to remove the central service provider and
gives more control to the individual users. However, decentralized sys-
tems cannot guarantee the availability of data as users go online and
offline as they please. Furthermore, no single entity is responsible for
data that does not belong to a specific user (such as item data). These
issues impact the quality of the recommendation service and, since
there is no responsible service provider, might not be resolved.

Uncertainty is typically introduced by adding random noise to the
data, which provides a mask over the user information. Alternatively,
data from multiple users is aggregated into the profile of a single user.
However, both approaches negatively impact the accuracy of the re-
commender system. The specific functions inside the recommender
system and the time when uncertainty is introduced determine the
amount of uncertainty that is required to guarantee certain levels of
privacy. A higher level of privacy requires a larger amount of noise,
or more data to aggregate. Furthermore, the sooner the uncertainty is
introduced, the more uncertainty is required. When this uncertainty
then propagates through the system, it is amplified. Therefore, when
the users introduce their own noise when presenting their private in-
formation, or aggregate their profile with a lot of other users, the sys-
tem then consists mainly of uncertainty. To preserve accuracy, typically
only the service provider introduces uncertainty, therefore no privacy
is achieved against the service provider. Furthermore, when aggrega-
tion is used, some user privacy is lost as genuine data is required to
create the aggregate.

Secure computation protects the data that is used during the com-
putation of recommendations by providing confidentiality, both at rest
and during computation. However, it suffers from a large computa-
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tional overhead, due to the use of cryptography and secure multi-party
protocols.

As decentralization does not offer a central authority on public in-
formation, it cannot be used to provide privacy in three out of the four
recommender system types. Furthermore, the continues flux of users
greatly impacts the availability, reliability, and freshness of data. This
leads to a decrease in the service quality of the recommender system.
Therefore, decentralization is not a good candidate to preserve the pri-
vacy in recommender systems.

Introduction of uncertainty cannot guarantee both accuracy of the
recommendation and privacy against the service provider at the same
time. Due to the amount of uncertainty that needs to be added to
have privacy, this trade-off is inherent to this approach to privacy. A
recommender system with low accuracy does not present any utility
to the user, and a having no option for privacy against the service
provider is not desirable for the user either. Therefore, the introduction
of uncertainty is not a good approach for enhancing the privacy of
users of recommender systems.

Secure computation does not suffer from service quality and ac-
curacy loss and is able to provide privacy against the service pro-
vider while having a central authority on public information. How-
ever, the privacy offered by secure computation does come at a cost.
The overhead caused by secure computation is far greater than for
recommender systems without privacy. As opposed to the previous
enhancement methods, this is a cost that can be compensated for up
to a certain extent. The development of faster primitives and the in-
crease in computational power of computers, can potentially lower the
overhead to reasonable levels. Therefore, in this thesis we focus on
the use of secure computation to enhance the privacy of recommender
systems, where we strive to make the computations as efficient as pos-
sible.

Next to the overhead caused by secure computations, there is an-
other challenge in the design of privacy-enhanced recommender sys-
tems. Because the secure computation is not allowed to leak personal
information, the computations have to assume that all possible data is
present and/or relevant. In a demographic recommender system, the
service provider will have to assume that the user to recommend for
is part of all demographics, compute recommendations for all of them,
and then at the end select the appropriate demographic. This leads
to an expected complexity in the order of number of demographics.
In a knowledge-based recommender system, this means applying the
preferences to all rules (if expressed in rules) in the knowledge base.
Leading to an expected complexity in the order of number of rules in
the knowledge base. For collaborative filtering this implies that each
element in the entire database of user ratings has to be touched at least
once. This leads to an expected complexity in the order of the number
of users times the number of items. This is opposed to non-private



8 introduction

recommender systems, where dismissing useless data early greatly in-
creases the scalability of recommender systems. For example, there
is no need to compute recommendations for items that the user has
already given a rating to. In collaborative filtering, to increase scalab-
ility, a neighbourhood of similar users is selected and the data of all
other users is ignored when computing recommendations. This is a
second overhead challenge that requires attention when designing se-
cure computation protocols for recommender systems.

1.5 research questions

Because of the additional overhead caused by secure computation and
the need for recommender systems to have huge databases to increase
the accuracy of recommendations, efficiency of solutions becomes a
main concern. In order to make recommender systems with privacy
based on secure computation more practical and encourage deploy-
ment, we ask the following main research question:

research question : How to construct efficient privacy-enhanced
recommender systems?

Specifically, we focus on three practical scenarios that are motivated
by the choice of secure computation and its implications. In these three
scenarios, next to addressing the specific problem, we strive for effi-
ciency. These three scenarios are taken from interaction with compan-
ies and drawbacks in existing secure computation solutions. We feel
that these scenarios represent the more pressing issues and we hope to
enable the deployment of privacy-enhanced recommender systems. Of
course, more practical scenarios exist, in this thesis we are unable to
address all of them. The three scenarios are captured in the following
research sub questions:

sub question 1 : How can competing recommender system service
providers collaborate?

Cooperating service providers are able to leverage each others data-
bases to provide better recommendations. However, privacy of users
and secrecy of a service provider’s database normally prevents compet-
ing service providers from collaborating based on sharing their plain-
text databases. There is then nothing to stop the competitor from run-
ning away with the newly acquired database and immediately stop
the collaboration. How can this hurdle of competition be overcome by
privacy-enhanced recommender systems, leading to both benefit for
the service providers and the users?

sub question 2 : How to cope with the limited user availability in
recommender systems?
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Figure 1: Outline of the thesis

Most existing secure computation protocols for recommender sys-
tems require interaction between the service provider and its users,
which makes unavailability of users a serious issue (particularly in the
case of collaborative filtering). When this issue is not addressed, the ef-
ficiency of the recommender system becomes dependent on the avail-
ability of the users. If one user goes on holiday for several weeks and
all other users have to wait for this user to get back home, efficiency
will be low. The typical approach to deal with unavailable users is to
introduce a second (independent) server, which needs to be (partly)
trusted by the users. We aim for a solution that requires neither avail-
ability of users nor a second server.

sub question 3 : How to deal with malicious intent by the users?

In general, privacy-enhanced recommender systems assume honest
behaviour of participating users. However, this assumption is not valid
in most cases, as users attempt to exploit the recommender system for
their own gain. An author of a book, might try to increase the repu-
tation of his book to increase sales. We aim to increase the robustness
of privacy-enhanced recommender systems against malicious intent
by users. Furthermore, we aim for a general solution that can be com-
bined with different types of recommender systems.

1.6 contributions and thesis outline

Figure 1 shows the outline of this thesis in picture form. In this pic-
ture, the title of each chapter is shown, which research sub question is
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answered, as well as all publications that chapter is based on. Because
the three sub questions and scenarios are quite different, each chapter
will feature a separate related work section and a separate introduction
of used primitives. Furthermore, each chapter has a detailed security
and privacy analysis, as well as a detailed performance analysis with
actual runtime figures based on a prototype implementation. The pro-
tocols and analysis of each chapter have been peer reviewed, except
for Chapter 4 which is still in submission to a journal. For the fourth
chapter, the protocols have been verified by experts outside the univer-
sity.

introduction : The current chapter, which provides an introduc-
tion to recommender systems and privacy, states the research
questions, and gives an overview of the thesis.

collaborating competitors : The second chapter answers sub
question 1. We provide a secure protocol that allows competing
service providers to collaborate and share their respective data-
bases of information, without leaking the database to the compet-
itor. The recommender system is a collaborative filtering system
and it is assumed that the competitors share the same items. As
neighbourhood selection does not help to speed up secure com-
putation, because every record needs to be touched anyway, this
step is omitted. However, this leads to requiring the computa-
tion of absolute values. The impact of this decision as well as
different distributions between the competitors are analysed and
discussed.

offline users : The third chapter answers sub question 2. We con-
tribute a secure protocol that allows users to be unavailable dur-
ing the computation of a recommendation for a specific user (this
specific user is still required to be online). Typically, protocols
rely on an additional server to split the data or trust of the user
to ensure privacy. Instead our solution relies on existing trust
relationships (e. g. friendship) between users who wish to share
their preferences. In this way, the friends act like a second server.
However, due to the unavailability of users, transferring the data
from the users to their friends cannot be done by simply syn-
chronizing the data when both are available. Proxy re-encryption
is used for on demand sharing of data.

malicious users : The fourth chapter answers sub question 3. We
present a secure framework for recommender systems that can
cope with malicious user behaviour. The framework can be in-
stantiated with different types of recommender systems that are
based on ratings. As we only assume the user to be malicious
and not the service provider, minimizing the interaction that the
user has with the recommender system reduces complexity and



1.6 contributions and thesis outline 11

increases efficiency. Therefore, the framework consists of two pro-
tocols for users to update ratings and retrieve recommendations.
In the rating update protocol, no expensive secure comparison
protocol is used to check the validity of the user input. To ensure
the privacy and the trust of the user in the service provider, the
framework assumes two non-colluding servers. In this chapter
we also discuss the shilling attack in relation to our framework,
an attack which is not covered by the cryptographic definition
of a malicious user. This attack allows users to intentionally bias
the recommender system, simply by giving valid ratings to the
system.

conclusion : The final chapter brings together the answers of the
different sub questions to reflect on the main research question
of this thesis. Compared to the state of the art, our solutions bring
improvements in the assumptions that are made, the private in-
formation that is leaked, and the efficiency.





2C O L L A B O R AT I N G C O M P E T I T O R S

2.1 introduction

Recommender systems typically use data from the entire customer
database of a service provider (company). Companies, which have
a lot of customers, are more likely to have enough data to generate
good recommendations. However, other companies do not necessarily
have enough data to do so [75]. In any case, more customer data can
only lead to better recommendations. For companies to gain access to
more customer data and to provide more meaningful recommenda-
tions for their customers, they can: (1) request the aid of another com-
pany which has a large customer database, or (2) collaborate with mul-
tiple other companies which contribute their relatively small customer
databases to create a large one.

The issue is that companies may not be able to simply share, or give
each other full access to, their customer databases. This will result
in an undesirable loss of control over their customer database, which
is basically their main asset. In addition, sharing customer data may
result in loss of customer trust, or privacy regulations may prohibit
such data sharing activities. We assume that the customer trusts the
company that it chose and we are therefore not concerned about the
privacy of the customer towards his chosen company. Companies may
be suggested to rely on a third party to generate recommendations.
However, this requires companies to share all their data with the third
party, and is undesirable as well.

The challenge is to find an efficient privacy-preserving mechanism
which allows companies to generate recommendations based on their
joint sets of databases, while preserving the privacy of their individual
customer database respectively.

2.1.1 Contribution

In this chapter, we first detail the used collaborative filtering algorithm
without privacy for the two-company setting, where company A re-
quests the aid of company B to get recommendations for its customer.
The used formulas are introduced before transferring them to the en-
crypted domain. Then, we construct a privacy-preserving collaborative
filtering algorithm. In our solution, company A uses a homomorphic
encryption scheme to hide its customer’s data and share the encrypted
data with company B, which computes its contributions to the final re-
commendations in the encrypted domain. From company B, company
A only obtains aggregated and anonymized data, which however al-

13
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low it to generate the top X recommendations for its customer. In the
honest-but-curious model (where companies adhere to the protocol,
but try to learn additional information), our solution guarantees that:
(1) company A has only access to an aggregated and randomized ver-
sion of the database of company B; (2) company B does not learn any
information about the customer data of company A.

To achieve this solution, we propose two secure two-party protocols
as building blocks. These protocols, namely the secure absolute value
protocol ABS and the secure division protocol DIV, can also be used as
building blocks in other protocols outside this work. We then build a
prototype of our solution and, based on this prototype, present per-
formance (computation/communication costs and accuracy) results.
We show a linear relation between the number of customers and exe-
cution time, which is the best that can be achieved (as similarity has to
be computed with all other customers). We confirm a larger accuracy
gain for company A as the difference in customer population between
the companies increases.

2.1.2 Organization

In Section 2.2, we formally specify the recommendation scenario. In
Section 2.3, we present our solution. In Section 2.4, we analyse the
security of our solution. In Section 2.5, we report on the performance
of our prototype implementation. In Section 2.6, we review the related
work, and Section 2.7 concludes the chapter.

2.2 problem statement and security model

In this section, we describe the research problem in the two-company
setting, and present our security model.

2.2.1 Problem Statement

In the two-company setting, company A collaborates with company B
in order to get better recommendations for its customers. We assume
that company A has n ′ customers and company B has n−n ′ custom-
ers, so that they have n customers in total. We further assume that
both companies share a set of m items. Should this not be the case, ex-
cess items can be removed, but no recommendations will be available
for them. The customers from both companies have provided some
ratings on this set of m items. For the simplicity of description, we
assume that there is no common customer between company A and
company B. Should a customer be common to both, the companies
will not find out as customer information is not shared. However, a
customer might get a recommendation based on himself if the ratings
are different for the different companies. This is more an annoyance
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than an actual problem, as the customer receives recommendations for
items he is no longer interested in.

Let a rating be an integer from a domain [vmin, vmax]. The rat-
ings of customer y, for 1 6 y 6 n, are denoted as a vector Vy =

(vy,1, vy,2, · · · , vy,m) where vy,i, for any 1 6 i 6 m, represents cus-
tomer y’s rating for item i. Company A holds the rating vectors Vy
(1 6 y 6 n ′), and company B holds the rating vectors Vy (n ′+1 6 y 6

n). Let the average rating of customer y be denoted by vy =
∑m
i=1 vy,i
m .

The research problem is to design a privacy-preserving collaborative
filtering algorithm such that: for customer x, where 1 6 x 6 n ′, com-
pany A can compute the top X unrated items (by customer x) with the
highest predictions, which are computed from its own database and
that of company B. A prediction of item i for customer x is denoted by
predx,i.

2.2.2 Security Model

We assume that company A and company B are honest-but-curious,
which means that they will adhere to the protocol specification but
will try to infer information from the protocol execution transcripts.
The rationale behind this assumption is that the companies are ex-
pected to have signed a service level agreement when engaging in a
collaboration. Malicious behaviours will be deterred due to the poten-
tial monetary penalties and legal actions. Customer feedback can be
used to test the validity of the recommendations. For example, when a
number of customers of company A receive useless recommendations,
company B might have acted maliciously. As a last resort, company
A can create a customer in both companies and compare the recom-
mendations received. We further assume that the customer trusts the
company that it chose and is not concerned about his privacy regard-
ing this company. But the customer is concerned regarding his privacy
and the other company.

Before describing the privacy requirements, we note an asymmetry
between the roles of company A and company B: company A will
make use of company B’s database to generate recommendations, there-
fore company A will be able to learn (or, infer) some information about
company B’s database; on the other side, there is no opportunity for
company B to learn anything about company A’s database because
it will not generate anything. Therefore, we distinguish two cases for
privacy protection.

Privacy of Company A

Company A should leak no information about its customer database
(Vy, 1 6 y 6 n ′) to company B, namely company B should learn noth-
ing from a protocol execution.
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Privacy of Company B

We observe that, if company A learns the predictions (predx,i, 1 6
i 6 m) for a customer x, then it is able to recommend those with
high predictions to the customer. Note that the predictions are gener-
ated based on the databases from both company A and company B
(Vy, 1 6 y 6 n). Based on this observation, we require that, in a pro-
tocol execution, company A learns only the information that can be
inferred from the predictions (predx,i, 1 6 i 6 m), but nothing else
(e. g. Vy,n ′ + 1 6 y 6 n).

Depending on the application scenario, the requirement for the pri-
vacy of company B can be enhanced. For instance, instead of learning
the predictions, we can require that company A only learns the top
X items with the highest predictions. Achieving such a strong privacy
guarantee may result in an intolerable complexity of the solution. We
leave further discussions of such specific scenarios as future work.

2.3 proposed solution

In this section we first present the collaborative filtering algorithm in
the plaintext domain, and then transform the operations into the en-
crypted domain.

2.3.1 Recommendation without Encryption

There are two approaches to design collaborative filtering algorithms.
One is the neighbourhood-based approach (e. g. [47]), and the other
one is the latent factor based approach (e. g. [55, 77]). In this chapter,
we choose a neighbourhood-based collaborative filtering algorithm, as
we believe they can be more efficiently represented in the encrypted
domain. This is due to the operations involved, which can be com-
puted in an efficient manner, as opposed to the latent factor model
building.

Following the framework proposed by Herlocker et al. [47], a neigh-
bourhood-based collaborative filtering algorithm generally operates in
three steps:

1. The customer similarity computation step: the similarities between
customer x and all other customers are computed based on their
ratings.

2. The neighbourhood selection step: the most similar customers to
customer x are selected. This step aims to improve recommenda-
tion efficiency and accuracy.

3. The prediction generation step: the predictions for customer x
are computed. This is done based on the ratings of the neigh-
bourhood selected in the previous step.
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In this subsection, we detail the formulas that are used in our solu-
tion for each step. There is no privacy protection yet.

Computing Customer Similarity

Herlocker et al. [47] provide a comparison of the most popular similar-
ity metrics for collaborative filtering. They conclude that the Pearson
correlation is the best correlation metric to use. In the Pearson correl-
ation the influence of a customers mean rating is taken out, as similar
customers might not have a similar rating behaviour. The formula for
the Pearson correlation for two customers x and y is given by:

simx,y =

∑m
i=1(vx,i − vx)(vy,i − vy)√∑m

i=1(vx,i − vx)2 ·
∑m
i=1(vy,i − vy)2

(1)

The result of this formula simx,y is the similarity between customers
x and y. The range of simx,y is [−1, 1]. For our convenience, we rewrite
the formula as follows.

simx,y =

m∑
i=1

cx,icy,i, where (2)

cx,i =
vx,i − vx√∑m
j=1(vx,j − vx)2

, cy,i =
vy,i − vy√∑m
j=1(vy,j − vy)2

(3)

For 1 6 i 6 m, the range of cx,i (or cy,i) is [−1, 1], and only the
vector Vx (or Vy) is needed to compute cx,i (or cy,i). Define the vector
Cx = (cx,1, cx,2, · · · , cx,m). Then the similarity can be computed by
taking the inner product of the vectors Cx and Cy, where Cy is defined
in the same way as Cx.

Selecting Neighbourhood

Herlocker et al. [47] suggest selecting the top z most similar custom-
ers as a neighbourhood, where z is a parameter that depends on the
dataset used. This provides a good coverage (i. e. having a prediction
for many items), while limiting the noise of not so similar customers.

However, instead of selecting a neighbourhood of similar custom-
ers, we select the entire customer population as the neighbourhood.
We make this choice because it will increase the performance in the
encrypted domain. Selecting the neighbourhood is by far the most ex-
pensive step in the protocol of Erkin et al. [37]. This choice results in
a slightly lower accuracy for items that were already covered in the
neighbourhood selection scheme (due to added noise). However, it en-
ables us to use dissimilar customers through negative correlation and
increase the coverage to the maximum possible.
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Generating Predictions

To generate a recommendation, Herlocker et al. [47] suggest using a
prediction algorithm that uses the deviation from mean approach to
normalization. The prediction is normalized based on the means of the
customers, as again similar customers might not have a similar rating
behaviour. We use the following formula, introduced by Resnick et
al. [79], to compute predictions:

predx,i = vx +

∑n
y=1(vy,i − vy)simx,y∑n

y=1 |simx,y|
(4)

The result of this formula predx,i is a predicted rating for item i by
customer x. The range of predx,i is [2 · vmin − vmax, 2 · vmax − vmin].
Since we only need the relative order of the predictions to compute
the top X recommendations, we use a simplified formula where vx is
taken out (it is constant for x). We rewrite the formula for use with two
companies, resulting in pred ′x,i =

Ex,i
Dx,i

, where

Ex,i = E
A
x,i + E

B
x,i, Dx,i = D

A
x,i +D

B
x,i,

EAx,i =
∑n′

y=1(vy,i − vy)simx,y, DAx,i =
∑n′

y=1 |simx,y|,

EBx,i =
∑n
y=n′+1(vy,i − vy)simx,y, DBx,i =

∑n
y=n′+1 |simx,y|

(5)

Intuitively, company A can compute EAx,i and DAx,i, and, given Cx,
company B can compute EBx,i andDBx,i. Together, they can compute the
order of the predictions pred ′x,i. If needed, company A can reconstruct
predx,i as it knows vx.

2.3.2 Cryptographic Preliminaries

In this subsection, we first review our main cryptographic primitive,
namely the Paillier encryption scheme [71], then show how to encrypt
negative values. Note that, we use the symbol ∈r to denote uniform
random selection. For example, x ∈r ZN denotes taking x as a uniform
random element from ZN.

Paillier Encryption

The (KeyGen,Enc,Dec) algorithms of Paillier encryption scheme [71]
are as follows.

KeyGen(`) : This algorithm generates a tuple (N , p , q , g , λ), where p
and q are two primes with the size determined by the security
parameter `. The other values are N = pq, λ = lcm(p − 1 , q −

1), and g ∈r Z∗
N2

. The private key is SK = λ, and the public
key is PK = (N , g).



2.3 proposed solution 19

Enc(m , PK) : The ciphertext for a message m ∈ ZN is c = gmrN

mod N2 , where r ∈r ZN . For simplicity, we denote Enc(m , PK)
as [m]PK , or [m] when it is clear from the context which public
key is used.

Dec(c , SK) : This algorithm computes the message m, from the cipher-
text c, as m = L(cλ mod N2 )/L(gλ mod N2 ) mod N. L(u)
is defined as (u − 1)/N for u ∈ Z∗

N2
.

The scheme is semantically secure under the decisional composite
residuosity assumption [71]. Based on the description, it is straight-
forward to verify that Paillier scheme possesses the following homo-
morphic properties.

[m1 ] · [m2 ] = [m1 +m2 ] , ([m1 ])
m2 = [m1 ·m2 ] .

Encrypting Negative Integers

To represent negative integers we make use of the cyclic property of
the cryptosystem. The top half of the message space will represent
negative numbers. When the message space is m ∈ ZN , we represent
−m by N − m, as N − m ≡ −m (mod N). We have to be careful
of overflows so that a negative number does not suddenly become a
positive number or vice versa.

2.3.3 Cryptographic Sub Protocols

In this subsection, we describe the sub protocols for secure comparison,
secure absolute value, and secure division.

Secure Comparison Sub Protocol

The secure comparison protocol, which is denoted by COMP(x , y),
is run between company A and company B, where company A has
x and company B has y. The protocol is used to compare the values
of x and y and give an output based on their relation. At the end,
company A should learn the result res, which is 1 when x > y and -1
otherwise. Company B learns nothing from the protocol execution. The
secure comparison protocol is used as a building block in the secure
absolute value protocol detailed below. Since Yao [89], a lot of solutions
have been proposed [40, 53, 52, 85]. In this chapter, we use that of
Veugen [85].

Secure Absolute Value Sub Protocol

The secure absolute value protocol computes the absolute value of
a value x, and is run between company A and company B. In the
protocol company A has a Paillier key pair (PK , SK) and company
B has [x] and the public key of company A, PK. Figure 2 shows
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Company A Company B

(PK,SK) (PK, [x])

1. b ∈r {−1, 1}, r1 ∈r Z2200

[y] = [x · b+ r1] = [x]b · [r1]
[y]←−−

2. decrypt: y
y−→
res←−−

res = COMP(y, r1)
r1←−

encrypt: [res]
[res]−−−→

3. [z] = [res]b

r2 ∈r ZN

[x+ r2] = [x] · [r2]
r3 ∈r Z∗N

[z · r3] = [z]r3

[x+r2],[z·r3]←−−−−−−−−
4. decrypt: z · r3

[s] = [x+ r2]
z·r3

[s]−−→
5. [t] = [s]

1
r3

[|x|] = [t] · ([z]r2)−1

([|x|])

Figure 2: Secure ABS Sub Protocol

our solution to compute the absolute value securely. We require that
−250 6 x 6 250 , so that x can be hidden statistically without causing
an overflow from a positive to a negative number. At the end, company
B should learn [ |x |] while company A learns nothing. Let the protocol
be denoted by ABS([x]).

In more detail, the protocol acts as follows:

1. Company B selects b ∈r {−1, 1}, r1 ∈r Z2200 . The domain of r1
is chosen in such a way that it can hide x with statistical security
without causing an overflow. Then, company B computes [y] =

[x]b · [r1] and sends [y] to company A.

2. Company A decrypts y and runs the secure comparison sub
protocol with company B who has r1. Company A obtains res,
which is either 1 or −1, encrypts it, and sends [res] to company
B.
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3. Company B computes [z] = [res]b. The value of z equals 1 when
x > 0 and −1when x < 0. Since res contains 1when x ·b > 0, this
means that either both x and b are positive, both are negative, or
x = 0. When both x and b are positive, z = res · b = 1 · 1 = 1,
x > 0 and |x| = z · x > 0. When both are negative, z is −1, x < 0,
and z · x > 0. When x = 0, z · x = 0 independent of z. The relation
between z and x similarly holds when res is equal to −1, always
leading to |x| = z · x > 0. Company B then selects r2 ∈r ZN and
r3 ∈r Z∗N, and sends [x+ r2] and [z · r3] to company A.

4. Company A decrypts [z · r3], and sends [x+ r2]
z·r3 to company

B.

5. Company B computes [|x|] = [(x+ r2) · z · r3]
1
r3 · ([z]r2)−1.

Secure Division Sub Protocol

The secure division protocol, shown in Figure 3, computes the divi-
sion of two variables x and y. The protocol is run between company
A and company B, where company A has a Paillier key pair (PK,SK)
and company B has [x], [y], and the public key of company A PK. Our
solution for secure division computes the division based on the mul-
tiplicative inverse and a list lookup. We assume y 6= 0. At the end,
company A should learn x ′

y ′ while company B learns nothing, where
x ′

y ′ =
x
y and GCD(x ′,y ′) = 1. Note that the equation x ′

y ′ =
x
y holds in

the integer domain instead of ZN.
In more detail, the protocol acts as follows:

1. Company B selects r1, r2 ∈r Z∗N and sends [y · r1] and [x · r2] to
company A.

2. Company A decrypts [y · r1] and inverts it to obtain y−1 · r−11 .

It then computes [x · y−1 · r−11 · r2] = [x · r2]y
−1·r−11 and sends

[x · y−1 · r−11 · r2] to company B.

3. Company B computes [x · y−1] = [x · y−1 · r−11 · r2]
r1
r2 , and sends

[x · y−1] to company A.

4. Company A decrypts to retrieve x · y−1, which is in the domain
of Z∗N. Suppose −T 6 x,y 6 T and T << N, then company
A can build a list of pairs (x · y−1, x

′

y ′ ), where x ′

y ′ = x
y and

GCD(x ′,y ′) = 1. Company A then looks up the list and obtains
x ′

y ′ .

2.3.4 Recommendation with Encryption

As specified in Section 2.2.1, company A’s customer database size is n ′

and company B’s database size is n− n ′. For customer x, the ratings
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Company A Company B

(PK,SK) (PK, [x], [y])

1. r1, r2 ∈r Z∗N
[y · r1] = [y]r1

[x · r2] = [x]r2

[y·r1],[x·r2]←−−−−−−−−
2. decrypt: y · r1

y−1 · r−11 = (y · r1)−1

[x · y−1 · r−11 · r2] = [x · r2]y
−1·r−11

[x·y−1·r−11 ·r2]−−−−−−−−−−→
3. [x · y−1] = [x · y−1 · r−11 · r2]

r1
r2

[x·y−1]←−−−−−
4. decrypt: x · y−1

compute: x ′/y ′

(x ′/y ′)

Figure 3: Secure DIV Sub Protocol

are vx,i (1 6 i 6 m), where vx,i = 0 means that the customer has
not rated i. We assume that company A creates a Paillier key pair by
running KeyGen.

Scaling, Rounding, and Inner Product

The Paillier cryptosystem deals with encryption/decryption of integers,
however, in the recommender system we work with non-integer val-
ues. Therefore, in the rest of this chapter, we assume that the values
of cx,i and cy,i, for all x,y, i, have been scaled by 100 and rounded
to integers. The scaling value of 100 gives enough precision to com-
pute recommendations correctly, while limiting additional overhead.
In addition, when computation is done with respect to Equation (5),
we assume company A and company B have already scaled the values
vy,i − vy by 100 and rounded the results, for all y, i.

For our recommender algorithm, the basic operation required is an
inner product between two vectors, say Cx and Cy, with different data
owners. Given an encrypted vector [Cx] (meaning each element of the
vector is encrypted [cx,i]) and an unencrypted vector Cy, anyone can
compute the encrypted similarity [simx,y] following Equation (2):

[simx,y] = [

m∑
i=1

cx,icy,i] =

m∏
i=1

[cx,icy,i] =

m∏
i=1

[cx,i]
cy,i (6)
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Privacy-Preserving Recommendation Generation

If customer x requires recommendations, company A and company B
engage in the protocol shown in Figure 4.

In more detail, the protocol is detailed as follows.

1. Company A computes the Pearson correlations, namely simx,y
(1 6 y 6 n ′,y 6= x), between customer x and all other customers
in its own database. For 1 6 i 6 m, company A computes [cx,i],
[EAx,i] and [DAx,i] according to Equations (3) and (5), and sends
them to company B. Note that the encryption is done with PK.

2. Company B computes [simx,y] following Equation (6) for n ′ +
1 6 y 6 n. Company B then runs the ABS sub protocol with
company A to obtain [|simx,y|] for n ′ + 1 6 y 6 n. Company
B uses [simx,y] and [|simx,y|] (n ′ + 1 6 y 6 n) to compute
[EBx,i] and [DBx,i] =

∏n
y=n ′+1[|simx,y|] for 1 6 i 6 m follow-

ing Equation (5). Company B computes [Ex,i] = [EAx,i] · [E
B
x,i] and

[Dx,i] = [DAx,i] · [D
B
x,i] for 1 6 i 6 m.

3. Company A and company B run the DIV protocol for company
A to retrieve pred ′x,i for 1 6 i 6 m. Company A then chooses the
top X predicted items among the unrated ones, and sends them
to customer x.

2.4 security analysis

We analyse the privacy properties of the protocols. The sub protocols
in Section 2.3.3 are secure. Given that the COMP sub protocol is secure,
we analyse the ABS sub protocol. Company A learns nothing about
x because of the randomization resulted from b, r1, r2, r3, r4 and com-
pany B learns nothing about x because everything is encrypted under
company A’s public key. In particular, we let r1 ∈r Z2200 , so that r1
can statistically hide x from company A. Intuitively, in the DIV sub pro-
tocol, company A learns nothing about x,y due to the randomization
resulted from r1, r2 and company B learns nothing about x,y because
everything is encrypted under company A’s public key.

Based on the security of sub protocols in Section 2.3.3, the recom-
mendation algorithm in Section 2.3.4 is secure with respect to the se-
curity model in Section 2.2.2. Given the security of the sub protocols,
the algorithm is secure for company A because everything sent to com-
pany B is encrypted under the public key PK. Similarly, the algorithm
is secure for company B based on the security of the ABS and DIV

sub protocols. Here, we have a minor note on using DIV sub protocol
in the recommendation algorithm in Section 2.3.4. If Dx,i = 0 for any
1 6 i 6 m, then the DIV protocol will not work. Note the fact that
Dx,i = 0 means that the similarities |simx,y| = 0 for all 1 6 y 6 n that
rated i, which can be assumed to be negligible due to the randomness
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Company A Company B

(x,Vy, 1 6 y 6 n ′) (Vy,n ′ + 1 6 y 6 n)

(PK,SK) (PK)

1. compute: simx,y, 1 6 y 6 n ′

∀i : 1 6 i 6 m;

compute: cx,i

compute: EAx,i

compute: DAx,i

encrypt: [cx,i]

encrypt: [EAx,i]

encrypt: [DAx,i]
[cx,i],[EAx,i],[D

A
x,i],16i6m−−−−−−−−−−−−−−−−−→

2. ∀y : n ′ + 1 6 y 6 n;

compute: cy,i

[simx,y] =
∏m
i=1[cx,i]

cy,i

∀y : n ′ + 1 6 y 6 n;

→ [|simx,y|] = ABS([simx,y])
[simx,y]←−−−−−−
[|simx,y|]−−−−−−→

∀i : 1 6 i 6 m;

[EBx,i] =
∏n
y=n ′+1[simx,y]

vy,i−vy

[DBx,i] =
∏n
y=n ′+1[|simx,y|]

[Ex,i] = [EAx,i] · [E
B
x,i]

[Dx,i] = [DAx,i] · [D
B
x,i]

3. ∀i : 1 6 i 6 m;

→
pred ′

x,i←−−−−−
pred ′x,i = DIV([Ex,i], [Dx,i])

[Ex,i],[Dx,i]←−−−−−−−−

(pred ′x,i, 1 6 i 6 m)

Figure 4: Collaborative Filtering in Two-Company Setting
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in customers’ ratings and the size of customer population. Our imple-
mentation in Section 2.5 partially validates this assumption. Should
this assumption be untrue, company A would be unable to generate
a prediction for item i. But, this would also happen in the unsecured
version of the protocol.

2.5 performance analysis

We have created a prototype implementation in C++. The prototype
uses the GNU Multiple-Precision (GMP) library and consist of roughly
750 lines of code. To test this prototype, we use the MovieLens 1M
dataset (taken from http://grouplens.org/), which contains 1 million
ratings for 3900 movies by 6040 users. The ratings are on an integer
scale from 1 to 5. We split the rating dataset in two parts by randomly
selecting users as either a customer of company A or company B. We
set the bit-length of the Paillier modulusN to 1024. All tests are carried
out on an Intel Xeon at 3 GHz, with 2 GB of RAM.

2.5.1 Computation Cost

Referring to the proposed protocol, the computational complexity is
related to both the number of customers of company B and number of
items. Theoretically, the computational complexities is O(m(n− n ′))
for both companies. To obtain concrete numbers for running time, we
investigate two cases, in which the total number of items is fixed.

Case 1

In this case, we want to investigate the running time with respect to
the total customer population. We take a fixed population distribution
as example, where company A has 20% of the total population and
company B has 80% of the total population.

We compute the running time values for ten different total popu-
lations, namely 604× i for 1 6 i 6 10. The running time figures are
shown in Figure 5, where the x-axis denotes the total customer pop-
ulation and the y-axis denotes the running time. The solid line indic-
ates the total running time for company A and company B, while the
dashed line indicates only the running time for company A. As expec-
ted, the graph shows a linear relation between the number of custom-
ers and the running time of the algorithm. The running time for both
company A and B individually increases linearly with the customer
population.

When the total population is 6040 (the full dataset), the running time
for the two companies is 354 seconds. Which is not efficient enough
for practice, we will discuss how to improve the efficiency later, how-
ever the customer is not involved and thus the recommendations can
be precomputed. Thus for the customer, getting a recommendation
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Figure 5: Running Time w.r.t. Total Population

only takes the amount of time it takes company A to lookup the pre-
computed recommendations.

Case 2

In this case, we want to investigate the running time with respect to
the population distribution between company A and company B. The
total population is 6040.

We compute the running time values for eight different population
proportions for company A, namely 1%, 2%, 5%, 10%, 20%, 30%, 40%,
50%. The running time figures are shown in Figure 6, where the x-axis
denotes the population distribution and the y-axis denotes the running
time. Again, the solid line indicates the total running time and the
dashed line indicates the running time for company A. The dashed
vertical line shows the intersection with Figure 5. In particular, when
company A only has 1% of the population the running time is 414

seconds, when company A is given 50% of the population the running
time is 270 seconds. As stated in Case 1, the running time for company
A and B increases linearly with the customer population of company
B. Note that when company A has less customers, company B also has
more customers due to the way the dataset is split. As expected, we
see a linear relationship between the running time and the distribution
of the customers.

2.5.2 Communication Cost

The communication cost between company A and company B is pro-
portional to the number of items and the number of customers held
by company B. We give an estimate of the communication cost for the
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Figure 6: Running Time w.r.t. Population Distribution

scenario where the customer population is split between company A
and B at a 20%
80% ratio. Given the composite number N of 1024 bits, an encryption,
which is essentially a number moduloN2, has a maximum size of 2048

bits. When adding everything up this results in a transmission of 15.2
MB of data.

2.5.3 Recommendation Accuracy

To evaluate the overall accuracy property of the protocol on the whole
customer population (namely, 6040 customers), we randomly select
10% of the 6040 customers, denoted as S, and remove 5 ratings for
each of them. The removed ratings are used to compare against their
predictions to determine the accuracy. We use root mean squared error
(RMSE) as the accuracy measure:

RMSE =

√√√√1

t

∑
x∈S,16i6m

(predx,i − vx,i)2, (7)

where t is the total number of predictions. Note that in our case,
the prediction formula pred ′x,i is only used to predict the ordering
of items, we use the formula for predx,i, defined in Equation (4), to
normalize back to predictions of actual ratings. This formula will give
the same ordering results and meaningful accuracy figures. The com-
putation shows an average RMSE of 0.930. This is compared against
k-nearest neighbours, threshold neighbourhood, and slope one predic-
tion in Figure 7. The results show that our algorithm is comparable to
these established recommendation methods.

To evaluate the recommendation accuracy gained by company A,
we consider eight cases, where the population proportion of company
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Figure 7: Accuracy Comparison with Established Algorithms

Figure 8: Accuracy Change w.r.t. Population Distribution

A in the whole population are 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%
respectively. When the proportions are 1%, 2%, 5%, 10%, we let com-
pany A’s customers be from the set S. When the proportions are 20%,
30%, 40%, 50%, we let company A’s customers consist of all customers
from the set S plus customers from the rest of the whole population.
For every case, we compute the RMSE value for company A, where the
computation is only based on company A’s customer data, and com-
pute a difference by subtracting the RMSE value based on the data
of the whole population. The RMSE differences of all eight cases are
shown in Figure 8, where the x-axis denotes the population distribu-
tion and the y-axis denotes the RMSE difference. From the figure, the
accuracy difference decreases when company A’s population propor-
tion increases. This implies that the accuracy gain becomes less when
company A has more customers.
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2.5.4 Improving the Efficiency

We foresee two ways to reduce the computation costs of the proposed
algorithm. Instead of using the data from all customers, company B
can use those from a subset of its customers. For example, those cus-
tomers that have rated a lot of items. By using a subset of the custom-
ers, company B has to compute fewer similarities between customers
and has fewer entries to compute the prediction with. When company
B uses a dense subset of the customers, the combined dataset will also
have a higher density. In this case, we will expect the recommendation
accuracy, compared to the accuracy computed from the full set of B’s
customers, will show only a small difference. As to the computational
efficiency, both companies will be more efficient because [simx,y] and
[|simx,y|], for any y not in the subset, will not be computed. In sum-
mary, the performance will depend on how to choose the subset by
company B, and we leave it as a future work to perform further invest-
igation.

In the proposed algorithm, if company A discloses the items that cus-
tomer x has rated, then the computation becomes less complex. This
is reasonable because it does not make sense to make a prediction for
an already rated item. Note that company A does not disclose the rat-
ings for the rated items. In more details, for any item i which has been
rated by the customer, the values [Ex,i], [Dx,i], their components, and
their division predx,i do not have to be computed. Furthermore, for
company B, computing [simx,y] can be done faster. In summary, com-
pany A can sacrifice a bit of the privacy of its customer for a better
computational performance.

2.6 related work

In the literature, the most relevant work to ours is that of Basu et
al. [16, 17] and that of Polat and Du [75]. Basu et al. proposed a privacy-
preserving version of the slope one predictor. They pre-compute the
deviation and cardinality matrices under encryption and make the car-
dinality matrix public. Then the prediction for a single item can be
computed under encryption and all parties collaborate to decrypt the
result. Making the cardinality matrix public in the case of two parties
will leak information. Furthermore, their timing information is based
on a single prediction for a single customer and item. When predict-
ing the top X recommendations, this timing information has to be in-
creased proportional to the number of items in the database (predic-
tions can be computed in parallel). The setting for Polat and Du [75] is
slightly different: a customer, who is not a member of either company,
wants company A and B to compute recommendations for him/her.
This customer plays an active role in the protocol and privacy is based
on randomizing values, rather than encryption. Another difference in
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their work is that a rating is either 0 or 1, which makes protocol design
easier than our case.

Other privacy-preserving recommender algorithms focus on the pri-
vacy of individual customers. Aïmeur et al. [13] provided a framework
where customer data are separately stored over two parties, where an
agent has access to ratings and the company has access to the items so
that they together can generate recommendations for customers. Polat
and Du [74] proposed a singular value decomposition predictor based
on random perturbation of data. They go on to show the impact on
privacy and accuracy, and their inherent trade-off due to perturbation.
Berkovsky et al. [18] proposed to combine random perturbation with
a peer-to-peer structure to create a form of dynamic random perturb-
ation. For each request, the customer can decided what data to reveal
and the amount of protection that is put on the data. Different perturb-
ation strategies are compared based on accuracy and perceived privacy.
The requirement for a peer-to-peer structure makes this approach less
suitable for our scenario, where only two parties are involved. McSh-
erry and Mironov [65] proposed collaborative filtering algorithms in
the differential privacy framework. Similar to other perturbation and
anonymization based approaches, this approach still has a trade-off
between privacy and accuracy. In our approach, we preserve privacy
without decreasing accuracy.

Canny [28, 27] uses homomorphic encryption to privately compute
intermediate values of the collaborative filtering process. These inter-
mediate values are made public and used in singular value decompos-
ition and factor analysis, which leads to recommendations. However,
because the intermediate values are made public, this leaks a lot of
information about the customers when all data is held by only two
parties (as is our case). Erkin et al. [37] proposed a collaborative filter-
ing algorithm based on homomorphic cryptosystems. This algorithm
requires every customer to take part in the protocol execution in order
to compute recommendations for a single customer, and this makes
the solution unscalable in practice.

There are two approaches to achieve privacy-preserving data min-
ing, which is similar in nature to recommender systems. One is per-
turbation and anonymization based following the work of Agrawal
and Srikant [12], and the other is cryptography-based following the
work of Lindell and Pinkas [60]. In dealing with a large data set, the
perturbation and anonymization based approach is generally efficient
and flexible, however this approach usually does not provide rigor-
ous security guarantees. For example, Narayanan and Shmatikov [69]
have demonstrated serious de-anonymization attacks against the Net-
flix Prize dataset. Recently, McSherry and Mironov [65] applied the
concept of differential privacy to recommender systems. With differen-
tial privacy they achieved rigorous security. However, this approach in
general may reduce the computation accuracy as it will modify the ori-
ginal data. In contrast, the cryptography-based approach can provide
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rigorous security guarantees and will not affect computation accuracy,
but it is often too complex to be practical. Our work demonstrates
that, for (at least some) recommender algorithms, the cryptographic
approach can be feasible, which means both efficiency and rigorous
privacy protection can be achieved at the same time.

2.7 conclusion

We have proposed a privacy-preserving collaborative filtering algorithm
for companies to compute recommendations based on a joint set of
customer databases. Based on the experimental results from a proto-
type implementation, we have shown that an individual company can
generate more accurate recommendations. The performance analysis
shows that it takes about six minutes to computes recommendations
for a customer using a PC. Notice that company A can pre-compute
the encryptions and company B can perform most of the computations
in a parallel manner. Therefore, the performance can be significantly
improved in practical deployment, and the solution is in fact feasible.
Furthermore, since the customer is not involved in the protocol, the
companies can pre-compute a recommendation for the customer and
present it immediately when requested.

The solution is limited in the fact that no privacy is offered for the
customer against its chosen company, only against the other company.
The solutions only considers a horizontal partitioning of the dataset,
the scenario where the dataset is vertically (or even arbitrarily) parti-
tioned is also interesting. This case seems to have more privacy con-
cerns because we somehow need to link the records in different cus-
tomer databases.
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3.1 introduction

Collaborative filtering recommender systems rely on a large database
of information from a lot of different users. With such a database the
systems then recommend content based on similarity (agreement in
rating behaviour) between users. However, studies [43, 46, 58, 84] have
shown that for taste related domains, such as movies and books, fa-
miliarity (social closeness between users) gives comparable accuracy
to using similarity. Familiarity captures how well users know each
other (and thus their preferences). Using familiarity instead of sim-
ilarity removes the information need from unknown users, thus in-
creasing privacy between users, as some trust already exists between
friends. Users in recommender systems are not always available to
share information and contribute to computations. As a benefit, this
trust between friends can also be leveraged to facilitate information
sharing when users are unavailable. Further, since no information from
unknown users is needed, a recommender system based on familiarity
also works on a smaller dataset, leading to a higher efficiency. In this
chapter we focus on the generation of recommendations using only
familiarity. We leave as future work, a recommender system that com-
bines both similarity and familiarity.

As a pre-requisite for a familiarity-based recommender system, a fa-
miliarity network needs to be known to the recommendation provider.
Since this familiarity information is already present in online social
networks, we can leverage these networks to provide recommenda-
tions. Our aim is to build a recommendation system on top of existing
social networks (utilizing the familiarity relationship that is present),
while preventing the social network from learning the users’ taste pref-
erences (not giving the social network any information that it does not
have already).

While the general tastes (and possibly some specific tastes) of friends
are known, the exact details of a friend’s complete taste are usually not
known. Revealing a specific taste to friends can be embarrassing [64]
as it does not conform to the group norm, or to the societal norm as
a whole. For example, if all friends of a person dislike ‘The Hunger
Games’, but that person loves the book, if the friends find out this
could be embarrassing. As such, the privacy of the user with regards
to their taste needs to be protected from both friends (specific taste)
and the online social network (general and specific taste).

Our contribution is the following: First, we look at the privacy of the
commonly used recommendation formula based on the weighted av-

33
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erage of ratings [43], where the strength of the relationship determines
the weighting factor. Using this formula, the ratings of close friends
have a higher impact on the prediction, than the ratings of distant
friends. We observe that weighted average based on user supplied
weights does not provide enough privacy. Based on this, we propose
an adjusted formula that offers more privacy. Second, utilizing this
adjusted formula, we construct a secure protocol that computes the re-
commendation for a user, when all his friends are online. For privacy
reasons, friends do not give their data to the online social network,
therefore all friends have to be actively involved in the computation.
However, users are not guaranteed to be online in a social network.
Third, as users can be offline, we also construct a secure protocol where
the users friends are offline, and the user works together with the so-
cial network server to compute the recommendations. Not having to
wait for all friends to have been online to do their part in the protocol
increases the efficiency of the solution.

To ensure the privacy of the users, we make use of secure multi-
party computation and a somewhat homomorphic encryption scheme.
The motivation for a somewhat homomorphic encryption scheme (we
use [21]) is: 1) it allows us to do a (bounded) number of additions
and at least one multiplication on encrypted data, and 2) the message
space is pre-determined by public parameters and is the same across
key pairs. The latter property allows for blinding values under one
key and unblinding under another. In constructing our solution, next
to privacy, we focus on the efficiency of the solution. Both protocols
are secure, assuming honest-but-curious participants.

In this chapter, we will use books as our running example for recom-
mendations. The chapter is structured as follows: Section 3.2 details
the state of the art and related work. Section 3.3 gives the problem
specification and details the adjusted recommendation formula. Sec-
tion 3.4 outlines the cryptographic primitives that are used. Section 3.5
details the solution with online friends and the solution with offline
friends. Section 3.6 analyses the solutions in terms of security and pri-
vacy. Section 3.7 analyses the complexity of the solutions and gives
performance figures based on our prototype. And Section 3.8 gives
concluding remarks with regard to the solutions.

3.2 related work

In this section, we show related work in privacy-preserving recom-
mender systems that protect privacy through the use of cryptography
and multi-party computation. In 2002, Canny [28] proposed using ad-
ditive homomorphic encryption to privately compute intermediate val-
ues of the collaborative filtering process. These intermediate values
are made public and used in singular value decomposition and factor
analysis, which leads to recommendations. However, the presented ap-
proach suffers from a heavy computational and communication over-
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head. Moreover, due to the nature of the used recommender system
(singular value decomposition), users cannot input their familiarity in-
formation.

Hoens et al. [48] designed a privacy-preserving recommender sys-
tem for social networks that computes the weighted average rating for
items. It gathers input from friends and friends of friends and onwards
by first defining a group of users involved in the computation. Then a
threshold homomorphic cryptosystem is set up. This cryptosystem, to-
gether with multi-party computation, is used to compute the weighted
average. The weights are defined by the user for his friends, and by
the friends for the friends of friends, and so on. Privacy is achieved
through both cryptographic protocols as well as anonymity through
multiple participants. The downsides of this solution are the require-
ment that users are online, the setup of a big group in advance, and
the heavy computational load in the order of hours for a recommend-
ation of a single book for a single user. Hoens et al. [49] designed a
private recommender system for doctors, where patient ratings are ag-
gregated. In this scenario, there is not a predefined group of patients
and no weights are given to individual ratings or patients. Hoens et al.
offer two solutions, one based on anonymized ratings, and one based
on cryptography and multi-party computation. Again, the timing (of
the solution based on cryptography) for computing a single recom-
mendation is in the order of hours.

Basu et al. [17] proposed a privacy-preserving version of the slope
one predictor, using a threshold additive homomorphic cryptosystem.
In their scenario, different parties hold different parts of the data. In
a social network setting, this means that each friend holds his own
data. The parties pre-compute the deviation and cardinality matrices
under encryption and make the cardinality matrix public. Then the
prediction for a single item can be computed under encryption and
all parties collaborate to decrypt the result. Their timing information,
in the order of seconds, is based on a prediction for a single user and
single book. This is after pre-computation of the matrices, which is
in the order of hours. There is no support for offline users, nor for
familiarity due to the way predictions are computed.

Erkin et al. [38] proposed a collaborative filtering algorithm based
on additive homomorphic cryptosystems. This algorithm requires a
second semi-trusted server to allow for users to be offline. However, in
practical scenarios such a server is usually not available. The protocol
of Erkin et al. does not give weights to the ratings. The runtime to
compute the recommendations for all books for a single user is in the
order of minutes for a dataset of 1000 books and several thousand
(variable) users.
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3.3 problem specification

We consider the following problem scenario: A user has just finished
reading a book and has to decide which book to read next. He turns
to his online social network of choice, but none of his friends are on-
line. With nobody to ask, he consults the book recommender system
of the online social network (which bases the recommendation on the
information from his friends). Knowing that his taste information re-
mains protected, the user also inserts a rating for the book he just
finished (‘Breaking Dawn’). The following subsections go into more
detail about the entities and their relationship, the suggested method
of using the taste information, and what constitutes a breach of pri-
vacy.

3.3.1 Architecture

The system consists of three entities:

1. the user, for whom a prediction has to be generated,

2. the online social network, also denoted as the server, acting as a
gateway to access the user’s friends and assisting in the predic-
tion computation, and

3. the friends of the user, giving their opinions as input for the book
predictions.

Because of the nature of online social networks, not all friends will
be online when the request for book recommendations is made. For
privacy reasons the server does not have access to the taste informa-
tion of friends and the user is unlikely to want to wait until all friends
have come online. Therefore, the online social network acts as a gate-
way for the information of the user’s friends (while not learning in-
formation about the friends’ preferences) and an assistant in the com-
putation (to prevent the user from learning the friends’ preferences).
As such, we distinguish two scenarios; book recommendation when
the user’s friends are all online, and book recommendation when the
user’s friends are all offline. It is also possible that some friends of
the user are online, while some are offline. For simplicity we take this
third scenario to be equal to book recommendation when the user’s
friends are all offline.

3.3.2 Recommendation Formula

Before predictions can be made, the familiarity between users has to be
captured. Towards this end, the user can score his friends on their fa-
miliarity (social closeness) and the expected overlap in reading habits.
Each user will have to give one score to each of his friends. This is
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something that is currently unavailable in online social networks (only
the fact that they are friends is available). It is possible to infer an
approximation of the strength of a relationship based on profiles and
interaction (e. g. [88]). However, we believe that the user is in the best
position to determine his own scores.

Scoring a friend essentially gives that friend a weight that determ-
ines how heavy his opinion counts towards a specific book recom-
mendation. Based on the friends’ ratings for books and the weight for
each friend, the recommender system predicts a score for each book.
This helps the user to select the next book to read.

A book prediction is denoted by pu,b, for user u, 1 6 u 6 U, of book
b, 1 6 b 6 B, where U is the total number of users and B is the total
number of books. The recommendation formula is as follows:

pu,b =

∑Fu
f=1 qf,b · rf,b ·wu,f∑Fu
f=1 qf,b ·wu,f

, (8)

where Fu is the number of friends of a user u, qf,b is 1 if friend f rated
book b and 0 otherwise, rf,b the rating of friend f for book b, and wu,f
the weight given by the user u to friend f. The indication, qf,b, if a book
b has been rated a friend f is either 0 or 1, qf,b ∈ {0, 1}. The range of
the prediction, pu,b, is equal to the range of the ratings given to a book,
rf,b. For example, this range can be between 0 and 5 for a 0 to 5 star
rating system. The weight given to a friend, wu,f, can be in the range
between 0 and 1 excluding 0, as 0 would indicate no friendship. This
formula has been used in previous research in similarity-based [47],
familiarity-based [43] and trust-based recommendation systems [86].

However, when looking at the inherent privacy this formula can give
us, we notice two things:

1. Due to the fact that the user u learns the predictions pu,b and de-
termines the weights wu,f, with two prediction requests the user
can learn which books are rated by one friend, i. e. learn qf,b.
This is accomplished by changing the weight wu,f for that spe-
cific friend. For example, suppose that the user has three friends
who have rated two books. The first friend rated the first book
with a 5, the second friend rated both books with a 4, and the
third friend rated the second book with a 3. When the user re-
quest a prediction with all weights set to 1, he will receive a pre-
diction of 4.5 for the first book and 3.5 for the second book. Next,
the user requests a prediction with the weights of the first and
second friend set to 1, and the weight of the third friend set to
0.5. He will receive a prediction of 4.5 for the first book and 3.67

for the second book, thus he learns that the third friend rated the
second book. Given enough runs, the user can learn qf,b for all
his friends.

2. Because the user knows pu,b, wu,f, and qf,b, the only unknown
values are that of rf,b. Given enough predictions with different
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weights, the user gets more equalities and can also compute rf,b.
Then the user knows pu,b, wu,f, qf,b, and rf,b and has com-
pletely breached the privacy of his friends.

Consequently, when using this formula, we cannot achieve privacy
at all. Intuitively, the user has full control, and the friends have no in-
put beyond their fixed ratings. This asymmetry in the formula leads
to an asymmetrical relationship between the user and his friends. As
stated by Carley and Krackhardt [29], friendship is not necessarily sym-
metric, but tends in the direction of symmetry. In general, long strong
friendships are symmetric, and newly forged friendships are not sym-
metric. As such, we aim to bring symmetry to the recommendation
formula and balance out the power in the relationship between the
user and his friends.

Since the weight from the user to his friends is asymmetrical, we
propose to make the weight, and thus the formula, symmetrical. This
is accomplished by taking the average of the weight from the user to
his friend and the weight from the friend to the user. This results in
the following formula:

pu,b =

∑Fu
f=1 qf,b · rf,b · (

wu,f+wf,u
2 )∑Fu

f=1 qf,b · (
wu,f+wf,u

2 )
, (9)

where wf,u is the weight given by friend f to user u, with range
between 0 and 1 excluding 0. Since the weight from the friend to the
user is required to compute recommendations for that friend, no new
information has to be added compared to the previous formula. Note
that this also requires a bi-directional relationship between the friends
and that both friends have specified a weight for one another. When
looking back to the two points made before in light of this adjusted
formula, we can say:

1. Since the user can still change the weights that are given to
his friends wu,f, the user can influence the averaged weight,
wu,f+wf,u

2 . Based on the changed weights and change in predic-
tions, the user can still determine qf,b as before.

2. When the user knows pu,b, wu,f, and qf,b, the values for rf,b
and wf,u remain unknown. The fact that both the upper and
lower part of the prediction formula remain unknown increases
the difficulty of breaching privacy.

To prevent the user from learning qf,b, the user’s influence on the
weight can be removed. However, then this recommender system would
lose the user’s control and reduce the value of the predictions. Instead,
we refer to profile aggregation methods [83], methods that add random
ratings [34, 63], or methods that add randomness to the output [65].
These solutions can be applied independent of our solution and will not
be addressed in this chapter.
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Note that the impact on accuracy of this adjusted formula (from
asymmetrical to symmetrical) has not been determined. Collaborat-
ive filtering algorithms typically rely on the Pearson correlation for
similarity [47], which is also a symmetrical correlation. Furthermore,
friendship tends to be in the direction of symmetry [29], therefore we
assume the impact to be minimal. As this chapter focusses on privacy
and efficiency, and a suitable dataset (with fine-grained familiarity in-
formation) to test accuracy could not be found, we leave it as future
work to validate this assumption.

Further note that, in this chapter, we assume that the user supplies
the weights. Should the weights be inferred by the server and remain
unknown to the users, the first recommendation formula (asymmetric)
can still be used. Our protocols can be adjusted accordingly without
major changes.

3.3.3 Security Model

Both the user and his friends are considered to be honest-but-curious;
they will follow the protocol but try to learn the taste of their friends.
More specifically, the user u will try to learn rf,b and wf,u, while the
friends of u will try to learn wu,f.

We also assume that the social network server is honest-but-curious;
the server will follow the protocol, while trying to learn the tastes of
users. The server will try to learn qf,b, rf,b, wu,f, wf,u, and pu,b. We
assume that the users do not collude with the server, as they do not
want to impact the privacy of their friends.

3.4 cryptographic primitives

To build our solutions, we make use of the cryptographic primitives
described in this section. The primitives of additive secret sharing and
proxy re-encryption are only used in the solution with offline friends.

3.4.1 Somewhat Homomorphic Encryption

To protect information during the protocol, we use the somewhat ho-
momorphic encryption scheme of Brakerski and Vaikuntanathan [21].
Specifically, we use the fact that this somewhat homomorphic encryp-
tion scheme allows both addition and multiplication of the encrypted
messages (though a limited, but configurable amount), and the fact
that the message space is the same across multiple key pairs (given the
same public parameters).

In the setup phase of the encryption system, the public parameters
are chosen. Among others, these are: the message space (which equals
Zt for some prime number t), the encrypted messages (which are rep-
resented in the ring Rq = Zq[x]/〈f(x)〉 of polynomials over Zq for
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some prime number q, where the polynomial f(x) is cyclotomic and of
degree n), and the degree D of allowed homomorphism (which indic-
ates the amount of multiplications that can occur under encryption).
The choice of the ring Rq in relation to the prime t and degree of
homomorphism D defines the security of the encryption system.

Each party can, based on these public parameters, create a key pair
consisting of the secret key SK and the public key PK. The secret key
is randomly chosen and the public key is based on the secret key and
some randomness. The public key of user u is denoted by PKu. Given
an encryption of m under the public key PKu, denoted by [m]u, the
following homomorphic properties hold (until the error overflows, typ-
ically when the degreeD has been reached): [m1]u+m2 = [m1+m2]u,
[m1]u+[m2]u = [m1+m2]u, [m1]u ·m2 = [m1 ·m2]u, [m1]u · [m2]u =

[m1 ·m2]u.
This scheme is semantically secure under the polynomial learning

with errors assumption. For more details, we refer to the work of
Brakerski and Vaikuntanathan [21].

3.4.2 Encrypted Division

Because the homomorphic encryption system can only encrypt integers,
and thus only operate on integers, division of encrypted values is not
straightforward. For example [5]/[2] 6= [2.5] as [2.5] cannot be repres-
ented as such. Given that the message space Zt is known and the
range of the predictions pu,b is also known and significantly smal-
ler, a lookup table can be constructed (and precomputed) to quickly
translate the integers after division into the actual fractions they rep-
resent. The lookup table looks like this: given two integers x and
y, with gcd(x,y) = 1 and x/y as a possible result for pu,b, the in-
dex is x · y−1 mod t and the resulting value x/y. For integers x ′

and y ′ with gcd(x ′,y ′) 6= 1, the division result is the same as for
x = x ′/ gcd(x ′,y ′) and y = y ′/ gcd(x ′,y ′). We denote the set of pos-
sible integers for x, X, the set of possible integers for y, Y, and the
range of possible predictions pu,b, P. The lookup table then has size
|{x/y | gcd(x,y) = 1, x/y ∈ P, x ∈ X,y ∈ Y}|. The size of the lookup
table is upper bounded by the size of the message space Zt. As such,
division can happen under encryption and after decryption a table
lookup retrieves the actual result.

3.4.3 Additive Secret Sharing

An alternate method to protect information from multiple parties, while
still providing operations on that information, is additive secret shar-
ing [42]. Unlike encryption, where only the party with the key can
decrypt it, anybody with enough shares can extract the information.
Distribution of the shares prevents extraction of the information, but
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still allows us to run a protocol to use the information. When a party
has a value x that it wants to protect, it creates a random value r ∈R Zk,
where k is the modulus based on a security parameter. The party then
creates s = x − r. It can give r to a second party, and s to a third.
Together the second and third party can reconstruct x by x = r+ s.

It is also possible to secret share a vector of values, X, of length
n. The secret sharing algorithm is then applied to each element of X
individually, resulting in the two vectors R and S, both of length n.
When combined the vectors R and S sum up to the vector X, xi =

ri + si, where 1 6 i 6 n.

3.4.4 Proxy Re-encryption

To share information between two friends in the social network, we
use proxy re-encryption [19]. Proxy re-encryption allows us to send a
(secret) message from one user to his friends through the social net-
work. In proxy re-encryption, based on the keys of two users a re-
encryption key can be derived. This re-encryption key is then given to
the proxy (the social network server). When given a message encryp-
ted under the key of one user, using the re-encryption key the proxy
can translate the message, to a message encrypted under the key of the
second user. This way an offline user can store his information on the
social network encrypted under his own key. When a friend requires
access to that information, the server can translate the information to
be encrypted under the key of the friend (provided a re-encryption
key has been setup). The friend can then decrypt and use the inform-
ation left by the offline user. Alternatively, a user could encrypt his
information for each of his friends separately. However, this increases
the workload of the user by a factor of the number of friends.

We require that the re-encryption scheme is unidirectional.In a uni-
directional scheme the users do not have to share their private keys to
create a re-encryption key. To create a re-encryption key from the user
to a friend, only the user’s private key and the friend’s public key are
needed. We further require that the re-encryption scheme is one-hop
only, so that only friends of the user can read his information. Some
examples of schemes that satisfy these requirements are: Ateniese et
al. [15], Libert and Vergnaud [59], and Chow et al. [32]. The proxy re-
encryption scheme can be chosen independent of our protocol and is
only used to give the friends’ information to the user beforehand.

3.5 proposed solutions

In this section we provide the details of the protocols to compute the
book recommendations. A protocol is given when all friends are online,
and a protocol is given when all friends are offline. For convenience,
we make some small cosmetic alterations to the prediction formula 9.



42 offline users

We set the value of rf,b to 0 when qf,b = 0, thus rf,b becomes equal to
qf,b · rf,b. We also divide wu,f and wf,u by 2 before running the protocols
(without renaming), remove the need to divide by 2 during the protocol. We
further assume that rf,b, wu,f, and wf,u are integer values and if needed
scaled to preserve precision.

3.5.1 Solution with Online Friends

Figure 9 shows the recommendation protocol for user u with online
friends. We assume that, before the protocol is run, the user u has
set up his keys for the somewhat homomorphic encryption scheme,
{PKu,SKu}, and distributed the public key. The protocol works as fol-
lows:

1. Each friend f of the user u computes their weight wu,f+wf,u. To
do this, the user u encrypts wu,f for each friend under his own
key, and sends [wu,f]u to the corresponding friend f. The friends
compute [wu,f +wf,u]u = [wu,f]u +wf,u.

2. Given the encrypted weight, each friend computes the impact of
his ratings, (wu,f+wf,u) · rf,b, for each book. Recall that rf,b = 0,
when the book is unrated. The friends compute [nf,b]u = [wu,f+

wf,u]u · rf,b, and send [nf,b]u to the server. The server sums the
values received by the friends into [nb]u =

∑Fu
f=1[nf,b]u for each

book.

3. In similar fashion, the normalization factor db is computed. The
friends compute [df,b]u = [wu,f +wf,u]u · qf,b, and send [df,b]u
to the server. The server sums the values received by the friends
into [db]u =

∑Fu
f=1[df,b]u for each book.

4. To compute the predictions pu,b, a division has to be performed.
Towards this end, the server selects random values ξb from the
multiplicative domain of the message space Z∗t and blinds db
multiplicatively for each book, [db · ξb]u = [db]u · ξb. The res-
ulting values [db · ξb]u are sent to the user u. The user u de-
crypts to db · ξb and computes the inverse, d−1b · ξ

−1
b , for each

book. These inverses are encrypted again under the users key,
[d−1b ·ξ

−1
b ]u, and sent to the server. The server removes the blind-

ing by multiplying with the random values ξb again, [d−1b ]u =

[d−1b · ξ
−1
b ]u · ξb. The server then divides nb by db for each book

to determine the predictions, [pu,b]u = [nb]u · [d−1b ]u. The en-
crypted predictions are then sent to the user u.

5. The user u decrypts the received predictions and uses the pre-
computed division lookup table to determine the actual predic-
tions.
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User u Server Friends Fu
(PKu,SKu) (PKu) (PKu)

(wu,f, 1 6 f 6 Fu) (Rf,Qf,wf,u)

∀f : 1 6 f 6 Fu;

1. encrypt: [wu,f]u
[wu,f]u−−−−−→

[wu,f +wf,u]u = [wu,f]u +wf,u

∀b : 1 6 b 6 B;

2. [nf,b]u = [wu,f +wf,u]u · rf,b
[nf,b]u←−−−−−

[nb]u =
∑Fu
f=1[nf,b]u

3. [df,b]u = [wu,f +wf,u]u · qf,b
[df,b]u←−−−−−

[db]u =
∑Fu
f=1[df,b]u

4. ξb ∈r Z∗t

[db · ξb]u = [db]u · ξb
[db·ξb]u←−−−−−−

decrypt: db · ξb
d−1b · ξ

−1
b = (db · ξb)−1

[d−1b · ξ
−1
b ]u

[d−1
b ·ξ

−1
b ]u−−−−−−−−→

[d−1b ]u = [d−1b · ξ
−1
b ]u · ξb

[pu,b]u = [nb]u · [d−1b ]u
[pu,b]u←−−−−−

5. decrypt: pu,b

(pu,b, 1 6 b 6 B)

Figure 9: Book Recommendation Protocol with Online Friends



44 offline users

3.5.2 Solution with Offline Friends

To cope with offline friends, we split the data of friends between the
server and the user using secret sharing (thus reducing trust require-
ments). As the data is split neither the server nor the user has access
to the friends data. Proxy re-encryption is used to give part of the
data from the friend to the user. The re-encryption key from the friend
to the user is used as a manifestation of their familiarity relationship
(uni-directional from the friend to the user).

Usage of Secret Sharing and Proxy Re-encryption

Each friend f of the user secret shares the rating vector Rf and weight
wf,u. The rating vector Rf is split into the vectors Sf and Tf following
the secret sharing method. Similarly, the weight wf,u is split into xf,u
and yf,u. As the secrets will be reconstructed under encryption, we set
the modulus k of the secret sharing scheme equal to the message space
t of the homomorphic encryption system. The friend stores Sf and xf,u
on the server. The vectors Tf and Qf as well as the value yf,u will be
distributed to the user u using proxy re-encryption. Therefore, these
values are stored under encryption at the server and the re-encryption
key to the user u is computed and also stored on the server.

Protocol

Figure 10 shows the recommendation protocol for user u with off-
line friends. We assume that, before the protocol is run, the required
secrets Tf,Qf, yf,u, 1 6 f 6 Fu have been distributed and that both the
user u and the server have set up their keys for the somewhat homo-
morphic encryption scheme, {PKu,SKu} and {PKs,SKs} respectively,
and exchanged public keys. The protocol works as follows:

1. Both user u and the server compute the weight, wu,f +wf,u, for
each friend under one another’s public key. The weight is com-
puted by wu,f +wf,u = wu,f + yf,u + xf,u, where u holds wu,f
and yf,u, and the server holds xf,u. The user u computes [wu,f+

yf,u]u and sends this to the server, while the server computes
and sends [xf,u]s. This allows the user to compute [wu,f+wf,u]s
and the server to compute [wu,f +wf,u]u.

2. Given the encrypted weights, both the user u and the server can
compute the impact of the secret shared ratings rf,b = tf,b + sf,b
for each book. The user u computes [zb]s =

∑Fu
f=1[wu,f+wf,u]s ·

tf,b and the server computes [ab]u =
∑Fu
f=1[wu,f +wf,u]u · sf,b.

Together, this sums up (ignoring encryption for a moment) to
zb+ab =

∑Fu
f=1(wu,f+wf,u) · (tf,b+ sf,b) =

∑Fu
f=1(wu,f+wf,u) ·

rf,b = nb. The user u selects random values ξ1,b from the do-
main of message space Zt and uses them to blind [zb]s. The res-
ulting encryptions, [zb + ξ1,b]s, and the encryptions to remove
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User u Server

(PKu,SKu,PKs) (PKu,PKs,SKs)

(Tf,Qf,wu,f,yf,u, 1 6 f 6 Fu) (Sf, xf,u, 1 6 f 6 Fu)

∀f : 1 6 f 6 Fu;

1. encrypt: [wu,f + yf,u]u encrypt: [xf,u]s
[wu,f+yf,u]u−−−−−−−−−→

[xf,u]s←−−−−−
[wu,f +wf,u]s = [xf,u]s + (wu,f + yf,u)

[wu,f +wf,u]u = [wu,f + yf,u]u + xf,u

∀b : 1 6 b 6 B;

2. [zb]s =
∑Fu
f=1[wu,f +wf,u]s · tf,b

ξ1,b ∈r Zt [ab]u =
∑Fu
f=1[wu,f +wf,u]u · sf,b

[zb + ξ1,b]s = [zb]s + ξ1,b

encrypt: [−ξ1,b]u
[zb+ξ1,b]s,[−ξ1,b]u−−−−−−−−−−−−−−→

3. [db]s =
∑Fu
f=1[wu,f +wf,u]s · qf,b decrypt: zb + ξ1,b

ξ2,b ∈r Z∗t [zb]u = [−ξ1,b]u + (zb + ξ1,b)

[db · ξ2,b]s = [db]s · ξ2,b [nb]u = [zb]u + [ab]u

encrypt: [ξ2,b]u
[db·ξ2,b]s,[ξ2,b]u−−−−−−−−−−−−−→

4. decrypt: db · ξ2,b

d−1b · ξ
−1
2,b = (db · ξ2,b)

−1

[d−1b ]u = [ξ2,b]u · (d−1b · ξ
−1
2,b)

[pu,b]u = [nb]u · [d−1b ]u
[pu,b]u←−−−−−

5. decrypt: pu,b

(pu,b, 1 6 b 6 B)

Figure 10: Book Recommendation Protocol with Offline Friends
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the blinding, [−ξ1,b]u, are sent to the server. Note that the server
can only remove the blinding using encryptions under the user’s
public key.

3. The user u computes the combined weight to normalize the pre-
diction using [db]s =

∑Fu
f=1[wu,f +wf,u]s · qf,b for each book.

These encrypted values are blinded multiplicatively with ran-
dom values ξ2,b, taken from the multiplicative domain of the
message space Z∗t . The resulting encryptions, [db · ξ2,b]s, and
encryptions to remove the blinding after inversion, [ξ2,b]u, are
sent to the server. Meanwhile, the server removes the blinding
values ξ1,b and reconstructs [nb]u = [zb]u + [ab]u.

4. The server decrypts the received encryptions, db · ξ2,b, and in-
verts them, resulting in d−1b · ξ

−1
2,b. Under the public key of u, the

blinding values ξ2,b are removed, resulting in the encryptions
[d−1b ]u. The server divides nb by db under the public key of u,
[pu,b]u = [nb]u · [d−1b ]u, for each book. The resulting encrypted
predictions [pu,b]u are sent to the user u.

5. The user u decrypts the received predictions and uses the pre-
computed division lookup table to determine the actual predic-
tions.

3.6 security analysis

In this section, we look at the security and privacy that the two pro-
tocols offer in relation to the security model. Recall from the security
model that all parties are honest-but-curious. The user u will try to
learn rf,b and wf,u. Friends will try to learn wu,f. The server will
try to learn qf,b, rf,b, wu,f, wf,u, and pu,b. Given that the parties
are honest-but-curious, each party should not be able to distinguish
between a protocol execution and a simulation of the protocol based
only on the party’s input and output. However, only the user u has an
output in the protocol. As such, for the server and friends, each mes-
sage they receive should be indistinguishable from random messages.
For the user, messages may depend on the output pu,b.

3.6.1 Online Friends

In this protocol, the user’s friends only see encrypted values, encryp-
ted under the key of the user u. Given that the homomorphic encryp-
tion scheme is semantically secure [21], the encrypted values are indis-
tinguishable from encryptions of random messages. As the friends also
get no output from the protocol, the protocol can easily be simulated
and the friends learn nothing from the protocol.

The server also only sees encrypted values. As the homomorphic
encryption scheme is semantically secure, the encrypted values are
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indistinguishable from encryptions of random messages. The server
receives no output from the protocol, and the protocol can easily be
simulated. Thus the server learns nothing from running the protocol.

After the user encrypts and sends wu,f, the user only receives db ·
ξb and pu,b for all books. As pu,b is the output of the prediction
formula 9, the user should always learn this and does not constitute a
breach of privacy. The other value, db, is randomized multiplicatively
over the full multiplicative domain by ξb, and is thus indistinguishable
from a value chosen at random from the domain. Because this can also
be easily simulated, the privacy of db is preserved. The only exception
to this is when db = 0, in this case db · ξb is also equal to 0. This
only happens when none of the users friends have given a rating for
b, i. e. qf,b = 0 for 1 6 f 6 Fu. This situation is deemed acceptable
as qf,b is not required to be private. By setting d−1b · ξ−1b to 0, the
protocol can continue without the server learning anything, resulting
in the prediction pu,b = 0.

3.6.2 Offline Friends

In the protocol with offline friends, the privacy of the user towards his
friends is not in danger, as they are not involved in the protocol. In
the other direction, each friend shares some information with both the
user and the server. The user receives through the proxy re-encryption
Tf,Qf, and yf,u, and the server receives Sf and xf,u. Except for Qf,
all these values are additive secret shares and hence indistinguishable
from random values [42]. This means that these values can be used
as inputs to the protocol. Given that the proxy re-encryption scheme
is secure, and Qf is not required to be private from the user u, the
privacy of each friend is not breached.

During the protocol, next to encrypted values, the user only receives
pu,b. As the homomorphic encryption scheme is semantically secure,
the encrypted values are indistinguishable from encryptions of ran-
dom messages. These messages can thus be simulated. Furthermore,
the user receives pu,b, as intended, as output of the prediction func-
tion. Thus from the user’s perspective the protocol can be completely
simulated.

Next to encrypted values, which are indistinguishable from encryp-
tions of random values, the server only receives zb+ ξ1,b and db · ξ2,b.
The value of zb is protected by additive blinding, using ξ1,b, and thus
indistinguishable from a random value and possible to simulate. For
db, as in the protocol with online friends, multiplicative blinding, us-
ing ξ2,b, is used. Thus db is indistinguishable from a random value
and can be simulated. Only in the case that db = 0, will the server
learn something about qf,b, which is a violation of the privacy of the
user’s friends. This can be avoided by setting [db · ξ2,b]s to [ξ2,b]s and
[ξ2,b]u to [0]u when db = 0. This is only the case when qf,b = 0, for
1 6 f 6 Fu, which the user knows. The server will receive ξ2,b instead
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Table 1: Complexity of the protocol with online friends, Fu is the number of
friends and B the number of books

User u Server Friend

step comp comm comp comm comp comm

1. O(Fu) O(Fu) O(1) O(1)

2. O(BFu) O(BFu) O(B) O(B)

3. O(BFu) O(BFu) O(B) O(B)

4. O(B) O(B) O(B) O(B)

5. O(B)

of 0, which is a random value, and be unable to decrypt [0]u as it is
protected by the user’s key. The resulting prediction pu,b will then still
be 0.

3.7 performance analysis

In this section we look at the complexity (computational and commu-
nicational) of the two protocols. Then, we look at the performance
(runtime) of the protocols with different sized datasets based on our
prototype implementation.

3.7.1 Theoretical Complexity

Table 1 shows the complexity of the computational (comp) and com-
municational (comm) costs of each step in the protocol with online
friends. The costs are given in big-O notation and for each party. The
first step shows a complexity related to the number of friends for the
user u, and constant for each friend. The second and third step, where
the friends contribution is calculated, shows a complexity in the order
of number of books for each friend, and in the order of both the num-
ber of books and friends for the server. These steps have the largest
complexity. The fourth step shows a complexity in the order of num-
ber of books for both the user and the server. The final step shows a
complexity on the order of the number of books for the user. All steps
together it seems that the server has the most work to do.

Table 2 shows the complexity of the protocol with offline friends.
The notation is the same as the previous table. The first step shows
a complexity in the order of number of friends for both the user u
and the server. The second step shows a complexity related to both
the number of books and number of friends for both the user and the
server. This step has the greatest complexity in the protocol. The third
step shows a complexity in the order of number of books and number
of friends for the user, and a complexity in the order of number of
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Table 2: Complexity of the protocol with offline friends, Fu is the number of
friends and B the number of books

User u Server Friend

step comp comm comp comm comp comm

1. O(Fu) O(Fu) O(Fu) O(Fu)

2. O(BFu) O(B) O(BFu) O(B)

3. O(BFu) O(B) O(B) O(B)

4. O(B) O(B) O(B)

5. O(B)

books for the server. The fourth step shows a complexity in the order
of the number of books. The final step shows a complexity in the order
of number of books for the user.

The complexity of the homomorphic operations on the ciphertexts
depends mainly on the degree of the used polynomials n. However,
n also has an impact on the ring Rq and thus on the security of the
encryption scheme. As such, there exist a trade-off between the com-
plexity (and efficiency) of the individual homomorphic operations and
the security offered to the user. In the performance section, we shall
come back to this trade-off.

3.7.2 Prototype Results

To analyze the performance of the two protocols, an implementation of
the somewhat homomorphic encryption scheme has been made in C++
based on the FLINT library. Based on this implementation a prototype
program of the protocols has been constructed. The prototype consists
of roughly 1050 lines of code. The prototype is single threaded and
computes the different steps for each party sequentially on the same
machine. As such, network latency is not taken into account. All tests
are carried out on an Intel Xeon at 3 GHz, with 2 GB of RAM. As in-
put data, a synthetic dataset has been constructed, as there are no pub-
licly available datasets that have explicit fine-grained familiarity values.
Some datasets have friendship links, but only as a binary value. The
synthetic dataset consists of either 50, 100, or 200 friends (based on the
number of average friends in Facebook) that have each rated 25 books.
The total number of books is either 500, 1000, or 2000 (comparable
to other datasets used in privacy-preserving recommender systems).
Note that it is not possible for 50 friends to rate 2000 books, with only
25 ratings per friend (denoted with n/a). This gives us performance
information for different numbers to observe how the solutions scale.
A rating is a score between 1 and 100, and the weights between users,
after division by 2, is between 1 and 50. Since the dataset is synthetic,
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Table 3: Runtime of the prototype with attacker runtime logarithm of 255

online books

friends 500 1000 2000

50 113 s 236 s n/a

100 149 s 309 s 706 s

200 222 s 456 s 988 s

offline books

friends 500 1000 2000

50 132 s 282 s n/a

100 182 s 387 s 1021 s

200 282 s 588 s 1477 s

no information can be derived about the accuracy of the recommender
system.

We set the parameters of the somewhat homomorphic encryption
scheme to the following, based on the suggestions of Naehrig et al. [67].
The message space t is set to 5000011, to allow for protocol runs with
a maximum of 500 friends (500 friends times a maximum rating of
100 times a maximum weight of 100 is 5 million). Based on the mes-
sage space and the potential security of the encryption scheme, we
take 4096 for the polynomial degree n. This results in a polynomial
coefficient size q of 84 bits and a logarithm of the attacker runtime of
255 for the decoding attack [61]. Successfully running the decoding at-
tack breaks the security of the encryption scheme, therefore Naehrig et
al. [67] suggest an attacker runtime for the decoding attack of at least
128, giving an equivalent of 128 bits security, or an attack complex-
ity of 2128. Table 3 shows the runtime performance of the prototype
implementation with these parameters.

As can be seen from the table, the prototype for the protocol with
online friends requires just under 2 minutes for the smallest dataset
and over 16 minutes for the largest dataset. As expected, the prototype
for the protocol with offline friends is slower. This prototype takes a
little over 2 minutes for the smallest dataset and over 24 minutes for
the largest dataset. This protocol has the benefit that friends need not
be online, but requires more time to protect the information of those
friends. When looking at the running times for the different datasets,
we see a linear trend with respect to the number of books and a sub
linear trend with respect to the number of friends. When looking at
the protocol complexity, this is to be expected. Most operations have
to be done per book and not per friend, but computing the impact of
each friend on each book is linear in both (and the slowest step in the
protocols).

We can lower the security of the somewhat homomorphic encryp-
tion scheme in order to gain a speed increase of the protocols. This
lowered security implies that it takes less time to break the semantic
security of the encryption scheme and recover encrypted messages.
Should encrypted messages be recovered, privacy is lost. Towards this
end, we take for n 2048, resulting in a q of 83 bits and a logarithm
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Table 4: Runtime of the prototype with attacker runtime logarithm of 75

online books

friends 500 1000 2000

50 50 s 102 s n/a

100 68 s 137 s 287 s

200 104 s 209 s 441 s

offline books

friends 500 1000 2000

50 59 s 120 s n/a

100 85 s 170 s 442 s

200 134 s 267 s 617 s

of the attacker runtime of 75. Table 4 shows the runtime performance
with these parameters offering lowered security, but more speed.

From the table we can see that these parameters result in runtimes
that are more than 2 times faster than the more secure parameters.
As expected, the running time relations between the different datasets
remains the same. The desired level of security has a large impact on
the running time of the protocols, but it does not change the basic
properties of the protocols.

3.8 conclusion

In this chapter, we proposed an efficient privacy-enhanced familiarity-
based recommender system. We proposed an adjusted recommenda-
tion formula that provides more privacy than weighted average with
user supplied weights. Furthermore, two different protocols have been
given, one where all friends of the user are online, and another where
friends are offline. In both cases, a bi-directional friendship is assumed.
The privacy of these protocols has been analysed, and two edge cases
have been found and fixed. The protocols achieve privacy in the honest-
but-curious model. A drawback of our solution is the reliance on friend-
ship (and the accompanied trust) to distribute data. This means that
our solution cannot be applied to similarity-based recommender sys-
tems.

We have made an implementation of the somewhat homomorphic
encryption scheme of Brakerski and Vaikuntanathan [21]. Based on
this implementation, a prototype of the two protocols has been built
and the efficiency of them has been analysed. The prototype is limited
to a single machine and single thread, and does not show the impact of
latency. The prototype shows a runtime in the order of minutes with a
linear trend with regards to scaling of the input set. This is a significant
improvement over the work of Hoens et al. [48], the previous privacy-
enhanced recommender systems with user supplied weights, which
also assumed honest-but-curious participants and ran in the order of
hours. Furthermore, not all users need to be online at some or all stages
of the protocol, which is required by most related work. When we
compare our work to the work of Erkin et al. [38], which assumes
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honest-but-curious participants and allows for offline users, we can see
the difference in slowdown of the protocol when going from online to
offline. The slowdown caused by our protocol is less than 1.5 times,
while the slowdown of Erkin et al. is more than 6 times.
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4.1 introduction

Considerable attention has been given to privacy in recommender sys-
tems, however (unlike this chapter) mainly dealing with honest-but-
curious users (as the previous chapters). In such a setting, the user
is assumed to adhere to the protocol specifications while still trying
to breach the privacy of other users. In practice however, users do
not always follow the rules. This gap between research and practice
holds back the deployment of privacy-preserving recommender sys-
tems. Users may not give proper ratings, and in privacy-preserving re-
commender systems that assume honest-but-curious users, improper
ratings will go unnoticed. Users may even try to exploit the recom-
mender system for their own gain. In the most common attack [44],
called the shilling attack, a user tries to introduce intentional bias into
the recommender system. This is done by crafting a special attack pro-
file within the constraints of the recommender system. For example,
to increase the number of recommendations for an item made or sold
by the user and by decreasing the number of recommendations for an
item from a competitor.

We provide a framework, based on secure computation, for a privacy-
preserving recommender system that can cope with malicious users,
i. e. users who do not follow the rules. In this framework, recommend-
ations are based around ratings given by users. We assume that the
recommender system itself consists of two non-colluding honest-but-
curious servers. The second server can act as both a privacy provider
and an efficiency provider to the first server and users. The advantages
of a second server are: 1) The users computational load is significantly
reduced. Even to the point where users are not required to be online
during the recommendation process [38]. 2) The user does not need to
fully trust a single server, but instead only semi-trust two servers, in-
creasing privacy for the user [13]. For similar reasons, two servers have
also been proposed in private database queries by Boneh et al. [20]
and in private data aggregation by Applebaum et al. [14]. This second
server could be run by a user representative company, or a privacy
watchdog, e. g. Electronic Frontier Foundation. A collaboration with
such a server could boost the reputation of the service provider, where
as any form of malicious behaviour from the servers may harm their
reputation. Assuming honest-but-curious users is less realistic as there
are no penalties for malicious behaviour. When the malicious user gets
caught, he simply creates a new account and continues as before. Us-
ing homomorphic encryption and secure two-party computation, the

53
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two servers will be able to compute the recommendations amongst
themselves in an oblivious manner. As the recommendations are com-
puted between the two servers, this framework gives flexibility in the
choice of the specific recommender system.

For the interaction with the users, we offer two secure protocols, one
for updating the ratings of a user and one for retrieving a recommend-
ation. The protocol for updating a rating has two major challenges:
1) The protocol requires sanitization of the (malicious) user’s input. 2)
The rating should be updated without either of the servers learning the
rating, or the item associated with that rating. To sanitize the user’s in-
put, our protocol does not rely on expensive secure comparisons, but
instead utilizes the fact that the rating space is typically small. To pre-
serve the privacy of the user, our protocol uses double blinding and
shifting to hide both the rating and the associated item. The protocol
for retrieving a recommendation has the challenge of not allowing the
(malicious) user control over what can be retrieved (i. e. decrypted).
During retrieval, our protocol has no information flow from the user
to the servers, thus removing user control. After detailing the frame-
work, we analyse the security and privacy of this solution with mali-
cious users and two non-colluding honest-but-curious servers. We also
analyse the performance (theoretical and practical) of the framework.

Furthermore, we discuss the shilling attack in relation to our privacy-
preserving recommender system framework. The shilling attack is not
covered by the cryptographic definition of malicious users, as the shil-
ling attack subverts the recommender system within the constraints
of the system. All ratings given by the user (who is performing the
shilling attack) are valid, given the rating constraints. Therefore, from
the cryptographic sense, the ratings are valid and not malicious. We
offer an approach to hinder the rapid building of attack profiles. How-
ever, similar to non-private recommender systems, the shilling attack
remains a concern.

4.1.1 Organization

Section 4.2 discusses related work. Section 4.3 outlines the problem,
details the architecture and security model, and gives an overview of
the envisioned framework. Section 4.4 introduces the cryptographic
primitive, supporting functions, and notation. Section 4.5 details our
solution for the privacy-preserving protocols. Section 4.6 analyses the
security and privacy of our solution. Section 4.7 analyses the perform-
ance of our solution and prototype implementation. Section 4.8 dis-
cusses the shilling attack in relation to our privacy-preserving frame-
work. Section 4.9 concludes.
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4.2 related work

Canny [28] proposed using additively homomorphic encryption to
privately compute a model for the collaborative filtering process. This
model is made public and used in singular value decomposition and
factor analysis, and can be used to make recommendations. Canny
takes malicious users into account by limiting the amount of influence
one user can have on the model each step. Furthermore, redundancy
is in place to prevent a malicious coalition from reporting incorrect
values and significantly altering the model. The main drawbacks are
the heavy computational and communication overhead, and the con-
tinuing involvement of users (or user representatives). As redundancy
is used to combat malicious users, most of the work has to be carried
out multiple times, increasing the overhead of privacy. Furthermore,
it is required that most users are online for several hours during the
execution of the protocol. Cheng and Hurley [30] investigate the im-
pact of the shilling attack on the work of Canny, specifically with the
model made public. They conclude that releasing the model increases
the knowledge for the attacker and makes it possible to more efficiently
introduce bias.

Alternatively, it has been proposed to add noise to the information
used in, or output from, recommender systems [18, 65, 74]. The added
noise adds uncertainty about user ratings, thus increasing privacy. Be-
cause ratings are not encrypted, it can be easily checked if they are in
the valid range. A downside of this approach is a loss in accuracy for
the recommendations. Furthermore, in case of a central trusted party
collecting true ratings, there is no privacy against this party [65]. In the
case of an untrusted central party [74] or a distributed setting [18], the
result is an even greater loss in accuracy. Gunes et al. [45] investigate
the impact of the shilling attack when applying the privacy protection
technique of Polat and Du [74], and conclude that the impact of mali-
cious user profiles remain almost the same compared to a non private
recommender system.

The usage of two servers has been proposed before. Aïmeur et al. [13]
proposed a second server (or trusted component within the server) to
promote the deployment of privacy-preserving recommender systems.
Their approach relies on two non-colluding honest-but-curious serv-
ers, a merchant and an agent. It is unclear if malicious users are taken
into account, but a collusion between a user and an agent results in
the loss of some privacy for the merchant. Furthermore, no protection
or robustness against the shilling attack is given. Erkin et al. [38] pro-
posed to use a second server to increase efficiency and unburden the
users of the recommender system. In their work, all entities are honest-
but-curious and are not allowed to collude. The shilling attack and its
implications are not mentioned.

Several solutions exist where the user data is distributed over mul-
tiple servers [17, 4, 75]. Each server has full access to the data that it
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is responsible for. As a result the user cannot give incorrect ratings,
but has no privacy against the server that holds his data. The user
does have privacy against the other servers. All these solutions rely on
honest-but-curious servers. The shilling attack and its implications are
not mentioned in these solutions.

As opposed to these solutions, our solution preserves the privacy of
the users against both servers and other users. In our framework, the
users are not required to be online and can be malicious and collude
with other users or one of the servers. Furthermore, we provide an
efficient solution that is flexible and does not suffer any accuracy loss.
We also discuss the shilling attack in relation to our framework.

4.3 problem specification

As previously stated, we aim to cope with malicious users while still
preserving privacy. To reduce the complexity of the system we assume
two honest-but-curious non-colluding servers. We further assume that
the recommender systems that will be instantiated in the recommender
system framework are based around user ratings.

4.3.1 Architecture

We assume that there is a large number of users and two servers. The
users give ratings and require recommendations, while the servers
compute the recommendations based on the user ratings. We repres-
ent the number of items, for which a recommendation can be given,
by n. The vector I = (1, 2 . . . ,n), denotes the item indexes. Each user
has a vector of ratings R = (r1, r2 . . . , rn), where each rating ri, i ∈ I,
is an integer (ri ∈ Z) either between the minimum (rmin > 0) and
maximum (rmax > rmin) value of a rating (depending on the rating
system used), or 0 if the item is not rated. We denote the number of
possible ratings by v (i. e. v = rmax − rmin + 1).

Both servers are together responsible for providing user privacy in
the recommender system. One of the two servers, which we shall de-
note the key server, is responsible for limiting access to the ratings of the
users, while allowing the recommender system functionality. This is
achieved through an additively homomorphic encryption scheme [39].
The key server holds a key pair for this encryption scheme, denoted
by PK for the public key and SK for the secret key, but is not allowed
to have access to any user data.

The other server, which we shall denote the data server, is respons-
ible for storing an encrypted version of the user ratings. The user rat-
ings are encrypted using the public key held by the key server. Each
rating in the vector of ratings R is encrypted element wise, [R]PK =

([r1]PK, [r2]PK . . . , [rn]PK), where [x]PK denotes the encryption of x un-
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der public key PK. The data server is not allowed to have access to the
secret key SK, but does know the public key PK.

4.3.2 Security Model

We assume that the users of the recommender system are potentially
malicious, i. e. they don’t have to conform to the protocol specifications
and can behave arbitrarily. We also assume that they can collude with
each other, and we do not put a bound on the number of malicious
users.

For the two servers, we assume that both of them are honest-but-
curious, i. e. they follow the protocol but try to learn any information
they can from the data being processed. Furthermore, we assume that
the two servers do not collude with one another. These are realistic
assumptions, as the companies that will run these servers have a repu-
tation to lose (thus causing severe damage). This is opposed to users,
that have very little to lose when behaving maliciously.

We also exclude collusion between one server and users. As the serv-
ers are assumed to behave in an honest-but-curious manner, colluding
with a malicious entity leads to a confusing state about the capabilities
of the colluding parties. The colluding parties cannot be both malicious
and honest-but-curious at the same time.

4.3.3 Framework Overview

The recommender system framework is based on three different ac-
tions:

1. Users should be able to update their ratings. The new or up-
dated rating of the user should be changed also on the data
server, without loss of the user’s privacy. However, the user is
considered malicious, so his input has to be validated. To achieve
this action, we propose a privacy-preserving rating update pro-
tocol (Section 4.5.1).

2. Users can request a recommendation. To compute this, a protocol
is run between the data and key server. The user is not involved
in this action, which ends with an encrypted recommendation
for the user at the data server. This action is not the focus of
this chapter, as it is already solved, e. g. Erkin et al. [38]. Because
we only impose some limitations (see Section 4.5.2) about the in-
put (encrypted ratings) and output (encrypted recommendation)
of the recommender system, the framework can be instantiated
with different types of the recommender systems. In Section 4.6,
we instantiate our framework with the work of Erkin et al.

3. Users retrieve their recommendation. After the computation of
the recommendation, the encrypted recommendation has to be
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sent from the data server back to the user. To achieve this ac-
tion, we propose a privacy-preserving recommendation retrieval
protocol (Section 4.5.3).

4.4 preliminaries

In our framework, we make use of the additively homomorphic en-
cryption scheme by Bresson et al. [22], which can be seen as the addit-
ive version of El Gamal [36]. This scheme offers a double decryption
mechanism, that successfully decrypts either by a master key or a local
key. The message space is ZN, where N is the product of two large
safe primes. These two primes form the master secret key. The local
key pair (SK,PK) is computed as follows: the generator g is chosen as
the square of a random element α from Z∗

N2
, g = α2 mod N2. The

secret key a is chosen at random between 1 and the order of the gener-
ator g (inclusive). The element h is computed as ga = h mod N2. The
public key consists of N,g, and h.

To encrypt a message m under public key PK, first a uniform ran-
dom element r is chosen from ZN2 . Encryption is then as follows:
A = gr mod N2,B = hr · (1+m ·N) mod N2. The ciphertext [m]PK
consists of the tuple (A,B). To decrypt a message using the local secret

key SK = a, compute the following: m =
B/(Aa)−1 mod N2

N . There is
a second decryption mechanism that uses the master secret key. Since
we do not need it in our work, we omit the details.

The homomorphic properties are as follows: [m1]PK · [m2]PK = [m1+

m2]PK, ([m1]PK)m2 = [m1 ·m2]PK. By generating the parameters and
throwing away the master key, an encryption scheme where multiple
(local) keys have the same message space can be derived. This lat-
ter property will be used in our rating update protocol. The scheme
of Bresson et al. is semantically secure under the decisional Diffie-
Hellman assumption. The efficiency of this scheme is comparable to
that of Paillier [71]. However, as a ciphertext is represented by two
elements instead of only one, the speed of operations is essentially
halved.

We note that Peter et al. [73] suggested to use the scheme of Bresson
et al. [22] to realize general-purpose outsourcing of computations in
the two-server setting. In contrast to Peter et al. we do not use the
double decryption mechanism of Bresson et al. but only need the fact
that the plaintext space is the same across different public keys.

Recall from the previous chapters that we use the symbol ∈r to de-
note uniform random selection. We use the following supporting func-
tions throughout our framework:

PERM(vector) : A permutation function that randomly permutes
the elements in the given vector. The output of this function is a
vector with the same size as the input vector.



4.5 our framework 59

CS(vector , magnitude) : A circular shift function operating on a
vector and having a certain magnitude. The elements of the vec-
tor are shifted to the end of the vector by the magnitude amount
of spaces. The number of elements in the vector remains the same.
In a circular shift, the element of the vector that is shifted out at
the end, is shifted in again at the beginning of the vector, thus
all elements remain in the vector. The output of this function is a
vector with the same size as the input vector.

REP(vector , index , new element) : A replacement function that
replaces the element of the vector at the given index with the
given new element. The first element of the vector is indexed
with 1. The output of this function is a vector with the same size
as the input vector.

4.5 our framework

Recall that our framework consists of three different actions. Users
should be able to update their ratings, request a recommendation, and
retrieve their recommendation. In this section, we discuss each action.
We also give one protocol for users to update their ratings and one for
users to retrieve their recommendations.

4.5.1 Privacy-Preserving Rating Update

A trivial solution for updating user ratings would be for the user to
send a complete encryption of his new data after every update. To
check if each rating, ri , i ∈ I, is within the correct range, between
rmin and rmax , would require running 2n encrypted comparison
protocols between the two servers. For each of the n items a compar-
ison is needed to check if the rating is above or equal to rmin and be-
low or equal to rmax . If any comparison does not satisfy the desired
outcome, the user ratings are not valid. However, this is undesirable as
it requires the user to store his own data, and the servers to check the
ratings of each item for validity with expensive comparison protocols.

Instead, the privacy-preserving rating update protocol has as user in-
put a single new rating r ′i and an item index i. The output of this pro-
tocol is the updated encrypted ratings vector [R ′ ]PK , or the original
encrypted ratings vector [R]PK in case of an incorrectly provided rat-
ing. The rating update protocol only updates one rating at a time. Since
to fully preserve privacy, each element of the ratings vector needs to
be touched, the complexity cannot be lower than linear in the number
of items. We add the requirement that the data server has his own key
pair PK? , SK? , with the same plaintext space ZN as the key pair of
the key server (recall that this is possible due to the use of the scheme
of Bresson et al. [22]). The protocol, shown in Figure 11 and Figure 12,
consists of six steps:
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User Data Server

(PK) (PK , SK? , PK? )

(r ′i , i) ([R]PK )

1 . encrypt: [r ′i ]PK
encrypt: [i]PK

[r ′i ]PK ,[i]PK−−−−−−−−→

([r ′i ]PK , [i]PK )

Figure 11: Privacy-Preserving Rating Update Protocol (Step 1)

1. The first step is shown in Figure 11. The user prepares his input.
The new rating and the item index are both encrypted using the
public key of the key server, [r ′i]PK and [i]PK. These encryptions
are then sent to the data server.

2. From the second step onwards, see Figure 12. The data server
prepares to check if [r ′i]PK is in the range between rmin and
rmax (in collaboration with the key server). Since the number
of possible ratings v in a recommender system is usually quite
small (rmax− rmin+1), the data server subtracts each possibility
f (rmin 6 f 6 rmax) from the rating received from the user. If
the rating given by the user is valid, one of these ciphertexts
[ef]PK will be a ciphertext of 0. The data server selects random
values df ∈r Z∗N and multiplicatively blinds these ciphertexts
[ef · df]PK = [ef]

df
PK, rmin 6 f 6 rmax. The resulting vector [E ·

D]PK is randomly permuted using PERM([E ·D]PK), leading to
the vector [E ′]PK. This vector [E ′]PK is sent to the key server.

3. The key server decrypts the vector E ′. If the user submitted a
valid rating, one of the elements in E ′ will be 0. In this case, the
rating was valid and the key server sends the bit v = 1 to the
data server and the protocol continues with step 4. If the vector
E ′ does not contain an element 0, the rating given by the user
was invalid. In this case, the key server sends the bit v = 0 to the
data server and the protocol is aborted.

4. If the protocol is not aborted (v = 1), the data server selects a
random value a ∈r Zn. With this random value a as a mag-
nitude the data server performs a circular shift of the encrypted
ratings vector, i. e. CS([R]PK,a) = [S]PK. The index received from
the user is updated to match this shift, [i]PK · [a]PK = [i+ a]PK.
This allows the key server to insert the new rating at the correct
location, without learning the actual item the rating is for. Then
the data server selects n random values to blind all old ratings,
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Data Server Key Server

(PK,SK?,PK?) (SK,PK,PK?)

([R]PK, [r ′i]PK, [i]PK)

2. ∀f : rmin 6 f 6 rmax;

[ef]PK = [r ′i]PK · [−f]PK
df ∈r Z∗N
[ef · df]PK = [ef]

df

PK

[E ′]PK = PERM([E ·D]PK)
[E′]PK−−−−→

3. decrypt: E ′

if ∃e ′f ∈ E
′ : e ′f = 0, rmin 6 f 6 rmax,

then: v = 1, else: v = 0
v←−

4. if v = 0,

then: [R ′]PK = [R]PK and abort,

else: a ∈r Zn

[S]PK = CS([R]PK,a)

[i+ a]PK = [i]PK · [a]PK
∀j ∈ I;
bj,b ′ ∈r ZN

[sj + bj]PK = [sj]PK · [bj]PK
[r ′i + b

′]PK = [r ′i]PK · [b
′]PK

encrypt: [bj]PK? , [b ′]PK?

[S+B]PK,[r′i+b
′]PK,[i+a]PK,[B]PK? ,[b′]PK?

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
5. decrypt: i+ a

k = (i+ a− 1 mod n) + 1

[S ′ +B ′]PK = REP([S+B]PK,k, [r ′i + b
′]PK)

[B ′]PK? = REP([B]PK? ,k, [b ′]PK?)

∀j ∈ I;
cj ∈r ZN

[s ′j + b
′
j + cj]PK = [s ′j + b

′
j]PK · [cj]PK

[b ′j + cj]PK? = [b ′j]PK? · [cj]PK?

[S′+B′+C]PK,[B′+C]PK?
←−−−−−−−−−−−−−−−−−−

6. decrypt: B ′ +C

∀j ∈ I; [s ′j]PK = [s ′j + b
′
j + cj]PK · [−b

′
j − cj]PK

[R ′]PK = CS([S ′]PK,−a)

([R ′]PK)

Figure 12: Privacy-Preserving Rating Update Protocol (Step 2-6)
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∀j ∈ I;bj ∈r ZN, resulting in the random vector B, and 1 ran-
dom value to blind the new rating, b ′ ∈r ZN. All the ratings
of the user (including the new rating) are then blinded, ∀j ∈
I; [sj]PK · [bj]PK = [sj + bj]PK (leading to the vector [S + B]PK),
and [r ′i]PK · [b

′]PK = [r ′i + b
′]PK. These blinding values are also

encrypted under the data server’s public key, [B]PK? (element
wise) and [b ′]PK? . The data server sends the following encryp-
tions to the key server: [S + B]PK, [r ′i + b

′]PK, [i + a]PK, [B]PK? ,
and [b ′]PK? .

5. The key server decrypts the received index and aligns it to the
proper range, k = (i + a − 1 mod n) + 1. This ensures that k
is an element of I. Using this index location k, the key server
replaces the old rating in the received ratings vector with the
new rating, REP([S+ B]PK,k, [r ′i + b

′]PK), in the shifted ratings
vector received from the data server. The key server also replaces
the blinding value in the blinding vector to match the blind with
the new rating, REP([B]PK? ,k, [b ′]PK?). This results in the vectors
[S ′ + B ′]PK and [B ′]PK? . The key server selects n random values
to blind the ratings, ∀j ∈ I; cj ∈r ZN. The blinding values are
added to the ratings and the blinding values from the data server,
resulting in [S ′+B ′+C]PK and [B ′+C]PK? . The key server sends
the following encryptions to the data server: [S ′ +B ′ +C]PK and
[B ′ +C]PK? .

6. The data server decrypts the blinding values, B ′ + C, and re-
moves the blinding values from the ratings, resulting in [S ′]PK.
Then the data server performs a circular shift to re-align the rat-
ings to their original position, CS([S ′]PK,−a) = [R ′]PK. The out-
put is the vector of the new encrypted ratings original encryp-
ted ratings of the user [R ′]PK, this vector replaces the old vector
[R]PK.

4.5.2 Privacy-Preserving Recommendation

As mentioned before, the framework can be instantiated with differ-
ent types of recommender systems. However, these recommender sys-
tems have to be based around user ratings, as this is the input to our
framework. Since the data server has all user ratings encrypted un-
der an additively homomorphic encryption scheme, [R]PK, this server
can process additions, subtraction, and scaling. Together with the key
server, both can interactively compute other operations such as multi-
plication, division, and comparison. These operations form the basis
of many different recommender systems, and can all be computed
privately. In our analysis in Section 4.7, we instantiate the framework
with the memory-based collaborative filtering recommender system of
Erkin et al. [38] as an example. However, it would also be possible to
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User Data Server Key Server

(PK) (PK) (SK,PK)

([x]PK)

1. y ∈r ZN

encrypt: [y]PK
[x+ y]PK = [x]PK · [y]PK

y←− [x+y]PK−−−−−−→
2. decrypt: x+ y

x+y←−−−
3. x = x+ y− y

(x)

Figure 13: Privacy-Preserving Recommendation Retrieval Protocol

do for example model-based collaborative filtering [27], content-based
recommendation [57], or hybrid recommendation systems [24].

We denote the output of the recommendations by [x]PK, in the case
of a single value, or [X]PK, in case of a vector. Since the data server
has all the rating information, and no input from the users is required,
all recommendations can be pre-computed by the servers. There are
some limitations to having the rating data stored under an additively
homomorphic encryption scheme. As homomorphic operations and
secure two-party protocols are less efficient than their non privacy-
preserving counterparts, the servers are bounded (depending on the
recommender system used) in the number of recommendations they
can compute in any given period.

4.5.3 Privacy-Preserving Recommendation Retrieval

The privacy-preserving recommendation retrieval has as input an en-
crypted result value [x]PK held by the data server and as output the
same value x, but unencrypted, held by the user. This protocol can be
run for multiple values in parallel, in case the input is the encrypted
vector [X]PK, which results in the output vector X for the user. The
protocol, shown in Figure 13, consists of the following three steps:

1. The data server selects a random value used for blinding, y ∈r
ZN. This blinding is applied to the result value, [x]PK · [y]PK =

[x+ y]PK. The data server sends y to the user and [x+ y]PK to
the key server.

2. The key server decrypts [x+ y]PK to x+ y. The key server sends
x+ y to the user.
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3. The user removes the blinding on the result value and retrieves
the result x, x+ y− y = x mod N.

4.6 security analysis

In this section we analyse the security and privacy of the update and
retrieval protocols. We look at the security and privacy of the protocols
from the perspective of the different parties in the system, a malicious
user, the data server, and the key server. We give a simulation-based
proof sketch of how privacy is preserved. For the malicious user, we
show how a malformed input impacts the system. Also, we discuss the
impact of colluding users.

4.6.1 Malicious User

In both protocols, the interaction between the user and the servers is
limited. The view of a malicious user in these protocols can be simu-
lated. In the case of the rating update protocol, the user receives no
information at all and thus cannot learn anything new. The simulation
ends immediately after the user encrypts his input. In the case of the
recommendation retrieval protocol, the user only receives two values,
x + y and y, which are both indistinguishable from a random value
taken from ZN. The only correlation they have is that the formula
x+ y− y = x mod N holds. As x is the output of the protocol, this
can also be simulated as any y taken from from ZN will satisfy this
relationship. During the interactions of the user with the servers, the
user only receives the recommendations provided by the recommender
system. This recommendation may leak some information, but this is
considered as intended information leakage as it is the result of the
recommender system formulas.

A malicious user might attempt to provide bad ratings to the servers.
Particularly, ratings that are not between rmin and rmax, ratings for an
item that does not exist (i. e. i 6∈ I), or invalid ciphertexts. If the rating is
not in the proper range, none of the elements r ′i − f, rmin 6 f 6 rmax,
will result in a 0. Therefore, even after blinding, the vector E ′ does
not contain a 0 either and the key server will send the bit 0 to the
data server and abort the protocol. Thus, the servers detect when a
rating is invalid and consequently abort the update protocol. If the
user provides an item index i that does not point to an item, this index
is forced to a proper index of a random item when the key server
computes k = i + a mod n. According to Bresson et al. [22], when
decrypting using the local key (which we use) an invalid ciphertext
(a ciphertext for which B/(Aa) = 1 mod N does not hold) will be
detected. Therefore, when a malicious user sends an invalid ciphertext,
this will be detected by the key server during the decryption of the
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vector E ′. As a result of this the key server sends the bit 0 to the data
server and the protocol is aborted.

4.6.2 Data Server

In the rating update protocol, everything the data server sees is either
encrypted or blinded. The new rating [r ′i]PK and index [i]PK received
from the user are encrypted with a semantically secure encryption
scheme, and thus can be simulated. The bit received from the key
server in step 3 reveals if a rating is in the proper range or not, as
intended, but nothing more. The updated ratings [S ′ + B ′ +C]PK that
are received from the key server are encrypted and blinded, and the
blinds of the data server [B ′ +C]PK? are also blinded. This additional
blinding C prevents correlation between the data that is sent to the key
server and the data that is received. This blinding makes the values
uniform random values and these values can therefore be simulated.
The blinding of the encrypted values adds fresh randomness to the
ciphertext and together with the semantic security, these ciphertexts
can be simulated and cannot be correlated. The retrieval protocol can
be simulated as the data server does not receive anything during the
protocol execution.

4.6.3 Key Server

In the rating update protocol, the key server first receives the vector
E ′ from the data server. Each element in this vector is either multi-
plicatively blinded with a uniform random value, and thus indistin-
guishable from a random value, or 0, which leaks that the rating r ′i
is valid. Because of the permutation operation PERM performed by
the data server, the position of the 0 does not reveal any information
about the rating r ′i to the key server. Thus, the key server learns that
the user’s rating is in the valid range or not, but nothing else. In step
5, the key server receives blinded, S+ B, r ′i + b

′, i+ a, and encrypted
values, [B]PK? , [b ′]PK? , from the data server. The blinded values are
indistinguishable from random values due to the blinding with uni-
form random values, and can thus be simulated. The encryptions are
encrypted under a semantically secure scheme, and can also be sim-
ulated. In the retrieval protocol the key server receives an encryption
of a blinded value, x+ y. This blinded value is indistinguishable from
a random value and can thus be simulated. Therefore, from the key
server’s point of view, the retrieval protocol can be simulated.

4.6.4 Collusion

When users collude with each other, they share their respective inputs
and outputs. Collusion can occur to either disrupt the functionality of
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the recommender system, or to learn private information about other
(non-colluding) users. Colluding users can coordinate their inputs to
subvert the recommender system. However, since the user input is san-
itized by the servers, users can only coordinate on a shilling attack. We
discuss this attack in Section 4.8.

Colluding users can try to learn the private information of other
users. This occurs by looking at the recommender system output in re-
lation to the input. The recommendation protocol is the only part of the
system where user data from multiple users is potentially combined to
form an output, a recommendation. If the details of the recommender
system are known, the colluding users can cancel out each others in-
fluence and effectively lower the total number of users in the system.
It then depends on the specific recommender system how this impacts
the privacy of other users. For example, a content-based recommender
would not suffer as only the information of the user seeking a recom-
mendation is used. For collaborative filtering on the other hand, in the
extreme scenario that there is only one other user next to the malicious
users, all privacy for the honest user is likely to be lost (as this would
be similar to a collaborative filtering system with only two users).

This is not limited to our private recommender system framework,
as non-private recommender systems face the same issue. A collusion
of users can pool their inputs and outputs and try to infer knowledge
about the other users in the system. In collaborative filtering, this is
especially dangerous for eccentric users [76]. This issue remains both
in non-private recommender systems and in our framework.

4.7 performance analysis

We look at the theoretical complexity of the framework first. Then we
look at the practical implications of this framework using a prototype.
We also instantiate our framework prototype with the recommender
system of Erkin et al. [38] and give performance numbers.

4.7.1 Theoretical Complexity

We look at the theoretical complexity of the two protocols. Specifically,
we look at the expensive cryptographic operations. Recall that we use
the additively homomorphic encryption scheme of Bresson et al. [22].
Table 5 shows the meaning of the abbreviations used in the complexity
tables. Further, we denote the data server by Sdata, the key server by
Skey, and the user by U.

Table 6 shows the computational and communicational complexity
of the privacy-preserving rating update protocol. Recall that n is the
number of items in the recommender system and v is the number of
possible ratings. In total, to update one rating, 5+ 5n+ v encryption
operations, 1+ n+ v decryption operations, 2+ 4n+ v homomorphic
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Table 5: Legend for performance analysis

Computation

enc encryption

dec decryption

add homomorphic addition

sc homomorphic scaling

Communication

ciph ciphertext

plai plaintext value from ZN

bit a 0 or a 1

additions, and v homomorphic scalings are made. Along with the ele-
ments transmitted for the 2 encrypted comparisons, 5+ 4n ciphertexts
are communicated. The majority of the computation happens on the
servers and the majority of the communication is between the servers.
The amount of work per rating update is linear in the number of items
n in the recommender system.

When pre-computing the random values, i. e. generating and en-
crypting the random values, the data server can save v encryption
operations in step 2 and 2+ 2n encryption operations in step 4. By pre-
computing, the key server can save 2n encryption operations in step
5. This reduces the total cost to 3+ n encryption operations, 1+ n+ v

decryption operations, 2+ 4n+ v homomorphic additions, and v ho-
momorphic scalings.

Because the framework can be instantiated with different types of
recommender systems, we cannot give complexity results for this step.
For privacy reasons, all encrypted information available to the two
servers that can potentially be used by the recommender system has
to be touched at some point. The amount of data gives an early in-
dication to the complexity of the recommender system. We note that
all computations take place on the servers and all communication is
between the servers. In the next section, we instantiate our framework
with a recommender system and give timing information.

Table 7 shows the computational and communicational complexity
of the privacy-preserving recommendation retrieval protocol per re-
commendation that is transferred to the user. In case of an output
vector X for the user, multiply the costs by the size of the vector. The
total computational cost is 1 encryption operation (which can be pre-
computed), 1 decryption operation, and 1 homomorphic addition. The
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Table 6: Per step complexity of the privacy-preserving rating update protocol

Step Computation Communication

1 U 2 enc U→ Sdata 2 ciph

2 Sdata v enc, v add, v sc Sdata → Skey v ciph

3 Skey v dec Skey → Sdata 1 bit

4 Sdata 3+ 2n enc, 2+n add Sdata → Skey 3+ 2n ciph

5 Skey 1 dec, 2n enc, 2n add Skey → Sdata 2n ciph

6 Sdata n dec, n enc, n add n/a

Table 7: Per step complexity of the privacy-preserving recommendation re-
trieval protocol

Step Computation Communication

1 Sdata 1 enc, 1 add Sdata → U 1 plai

Sdata → Skey 1 ciph

2 Skey 1 dec Skey → U 1 plai

3 U n/a

total communication cost is 1 ciphertext and 2 plaintext elements from
ZN.

The bulk of the work is done by the two servers, which can be ex-
pected to have powerful computing at their disposal. The impact on
the user is small, only two cryptographic operations per user rating
are required, and no cryptographic operations to get recommenda-
tions. Even though the complexity is linear in the number of items
(required for privacy), our framework has good efficiency with regards
to the computational and communicational overhead as the constants
are small.

4.7.2 Prototype Results

We have created a prototype implementation in C++ based on the
GNU Multiple-Precision (GMP) library. The prototype only uses a
single thread and computes the different steps for each party sequen-
tially on the same machine. As such, network latency is not taken into
account. The prototype consists of over 800 lines of code. All tests are
carried out on an Intel Xeon at 3 GHz, with 2 GB of RAM. To test the
performance of the protocols we take different sizes (1000, 4000, 10000,
50000) for the item sets. As both the update and retrieval protocols are
run per user, there is only a single user in this data. The data is ran-
domized for each run and the average of 10 runs is taken. We set the
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Table 8: Per step prototype timing results of the privacy-preserving rating up-
date protocol

Items 1000 4000 10000 50000

Step 1 (U) 0.01 s 0.01 s 0.01 s 0.01 s

Step 2 (Sdata) 0.11 s 0.11 s 0.11 s 0.11 s

Step 3 (Skey) 0.05 s 0.05 s 0.05 s 0.05 s

Subtotal 0.17 s 0.17 s 0.17 s 0.17 s

Step 4 (Sdata) 13.7 s 55.0 s 137 s 688 s

Step 5 (Skey) 13.8 s 55.0 s 137 s 687 s

Step 6 (Sdata) 13.6 s 54.6 s 137 s 684 s

Total 41.3 s 165 s 412 s 2059 s

bit-length of the modulus N to 1024. The number of rating options v
for the user is set to 10, with rmin = 1, and rmax = 10.

Table 8 shows the timing results of the rating update protocol without
using pre-computation of random values. As expected, the first 3 steps
do not show any difference depending on the number of items. These
steps only depend on the number of possible ratings v. In the first step,
the user only needs to spend 0.01 seconds, which should not impact
the user at all. After step 3, the servers have determined if the rating
supplied by the user is valid, and decide if to continue or not. Up to
this point the user and server only need 0.17 seconds, which is close to
real-time. If the decision about the rating is feed back to the user, the
user can then continue with his activities.

In step 4 to 6 the majority of the computational work takes place.
These steps are between the two servers only. They are dependent on
the number of items n and scale more or less linearly with this number,
averaging 0.0136 seconds per item. All these steps are dominated by
the cost for encryption and decryption, as homomorphic additions are
cheap in comparison. The per item cost of steps 4 to 6 of this protocol
is just over 0.04 seconds, which seems reasonable. However, the linear
scaling property makes this protocol less attractive for a huge number
of items.

Table 9 shows the timing results of the recommendation retrieval
protocol without pre-computation. In the first step, the cost is dom-
inated by the encryption operations (which can be pre-computed). In
the second step, the cost is dominated by decryption. Both steps take
a comparable amount of time, the second step is cheaper as no ho-
momorphic additions need to be performed. In the last step, where
the user combines the information received from the server, no crypto-
graphic operations take place. This step is therefore significantly faster
than the other steps and provides minimal overhead for the user. In
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Table 9: Per step prototype timing results of the privacy-preserving recom-
mendation retrieval protocol

Items 1000 4000 10000 50000

Step 1 (Sdata) 7.0 s 27.4 s 68.9 s 344 s

Step 2 (Skey) 6.8 s 27.3 s 68.2 s 340 s

Step 3 (U) 0.001 s 0.001 s 0.002 s 0.009 s

Total 13.8 s 54.7 s 137 s 684 s

total the average time per item is 0.0137 seconds. Similar to the rating
update protocol, the cost is reasonable, but scaling to a huge number
of items is less attractive.

We have instantiated the work of Erkin et al. [38] into our prototype1.
The instantiation consists of roughly 1600 lines of code. To pack the
ratings into fewer ciphertexts takes 455 seconds (just over 7.5 minutes)
for 1000 users and 1000 items. To then generate recommendations for
a single user based on these packed ratings takes 550 seconds (just
over 9 minutes). In comparison the protocols for updating ratings and
retrieving recommendations takes significantly less time. The timing
results for our framework are comparable to the timing results presen-
ted by Erkin et al. and to other solutions based on honest-but-curious
users.

4.8 the shilling attack and defences

Our privacy-preserving framework covers malicious users in the cryp-
tographic sense, where users cannot deviate from the functionality of
the system. In most recommender systems, users, by design, influ-
ence the recommendations for other users. As such, our framework
does not prevent users from influencing the recommendations of other
users. However, users can also be malicious within the constraints of
the recommender system and intentionally introduce bias for their
own gains. This is the main attack on non-private recommender sys-
tems [44], and is not covered by the cryptographic definition of a mali-
cious user. As we consider users to be potentially malicious, we discuss
the shilling attack in relation to our privacy-preserving recommender
system framework in this section.

In the shilling attack, a user tries to introduce bias into the recom-
mender system to either increase (push) or decrease (nuke) the pop-
ularity of an item. To accomplish this, the user crafts a special attack
profile [66] containing ratings specifically chosen to push or nuke a
single item and filler ratings to increase the spread and impact of the
attack profile. For example, to push (nuke) an item in a collaborative

1 We thank Erkin et al for giving access to their code.
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filtering system, give that item the highest (lowest) rating. The filler
ratings then consist of average ratings, or ratings similar to specific
other users. This will lead to the pushed (nuked) item getting a better
(worse) prediction for recommendation. Crafting multiple attack pro-
files that target the same item also increases the spread and impact.

4.8.1 Current Defences

Current proposed defences against the shilling attack [44] consist of
monitoring certain statistics of the recommender system, or having an
inherent robustness in the recommender system. Several statistics can
be monitored to identify attack profiles, such as weighted rating devi-
ation from mean agreement [25] or degree of similarity to neighbour-
ing profiles (in case multiple attack profiles are created with the same
method) [31]. Once an attack profile has been discovered, additional
measures can be taken.

Recommender systems can be made more robust by, for example,
trying to identify and exclude attack profiles [70]. This has a close rela-
tion to computing statistics, however some misclassification is allowed
as long as most profiles are classified correctly. Classification can oc-
cur based on a number of alternatives, e. g. mean rating, or standard
deviation. Alternatively, the impact of a newly added rating can be
computed on a fixed set of items [78]. If the impact of a newly added
rating is too large, the rating is rejected.

Both approaches require extensive computational work, which is in-
efficient when processing on encrypted data, and are privacy invasive
to the user, as computing these metrics leaks information about the rat-
ings of a user. The current defences against the shilling attack are still
possible in our privacy-preserving recommender system framework,
however we advise against them as they are inefficient and privacy
invasive.

An alternative defence that has been proposed is to offer a captcha to
the user upon creation of a profile (and possibly other steps) to hinder
automated profile building [66]. This idea has been dismissed as being
too invasive for the legitimate users of the recommender system [66].

4.8.2 Privacy-Preserving Defence

We think that the idea of hindering automatic profile building has
merit, especially in the setting of a privacy-preserving recommender
system, and go into more details. As the servers know when the user
interacts with the system, the servers can then first offer a small chal-
lenge to the user. However, we think that captchas are not suited.

Instead, to hinder the rapid building of attack profiles, we suggest
using a proof of work system [35]. A proof of work system (or client
puzzle scheme) allows a prover to prove to a verifier that some task has
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been carried out. The difficulty of this task can be set by the verifier.
The verifier, only having to check the proof, only has to do a fraction of
the work. Such a system has been suggested as a way to defend against
denial of service attacks [50]. In such a scenario the connecting client
(the prover) has to invest resources before the connection is accepted.
The difficulty of the proof of work is increased as the server has to
handle more connection requests. This increases the cost for the client
to connect, thus also increasing the cost of mounting a denial of service
attack.

Similarly, we can ask a user to do a proof of work for every rating
that is submitted to the servers. For every rating that the user wants
to add or change, he has to invoke the privacy-preserving rating up-
date protocol of our framework. Furthermore, only one rating can be
updated per run of the protocol. This prevents the user from circum-
venting the proof of work by updating multiple ratings for the cost
of only one proof of work. Prior to the execution of this protocol, the
data server can ask the user to submit a proof of work of a specific dif-
ficulty. When a user is quickly building a profile (potentially attacking
the recommender system), the difficulty of the required proof can be
increased. This requires the user to invest more resources into building
the profile and simultaneously slows down the number of ratings that
user can insert into the system. By decreasing the difficulty over time,
users who only rate a few items each time, but interact with the sys-
tem over a long period, do not have to give proofs with high difficulty.
Thus for the server to compute the difficulty of the proof of work, the
server only needs to know when and how many ratings are submitted
by the user. This information is known to the server as it coincides
with the invocation of the rating update protocol.

4.8.3 Proof of Work Scheme

The proof of work scheme we are looking for should have the following
properties:

determinable difficulty The determinable difficulty property im-
plies that the verifier (the server) can precisely determine the re-
quired resources from the prover (the user) in solving a puzzle.
This has two implications: (1) puzzles generated by the verifier
are independent from each other, such that solving one puzzle
does not help to solve another, and (2) generated puzzles are un-
predictable by the verifier, each puzzle looks fresh, so that solu-
tions cannot be pre-computed.

parallel computation resistance A prover cannot accelerate
the computation of the proof by parallel computation (e. g. by
using a botnet). This property requires that each step in the proof
computation cannot be computed before the previous step has
been computed, each step is performed sequentially.



4.8 the shilling attack and defences 73

Furthermore, the verifier should spend significantly fewer resources
then the prover in verifying the proof. The difficulty of the proof of
work should be able to be chosen with fine granularity. Ideally, no
state information for each proof of work is kept.

We suggest the scheme of Rivest et al. [81], as it achieves determin-
able difficulty and parallel computation resistance. However, it does
not achieve keeping no state information for each proof of work. The
description of the scheme is as follows:

Setup(` ,D) : Based on a security parameter ` and a maximum puzzle
difficulty D, this algorithm selects two random large primes p , q
and a cryptographic hash function H : {0 , 1}∗ → Z∗pq . The pub-
lic parameter is pq and the master key MK is (p , q , H).

Generate(MK , d , req) : This algorithm takes as input the master key,
a proof difficulty d, and possibly some additional request inform-
ation req. A random value r is chosen, r ∈r Zpq , and a gener-
ator g computed, g = H(r | |req). The proof of work is output as
(g , d) and the state information inf = (r , d , req) is stored.

Solve(g , d , pq) : Based on the proof of work (g , d) and the public
parameter pq, the proof h is computed as h = g2

d
mod pq.

Verify(MK , inf , h) : This algorithm takes as input the master key
MK, the state information inf, and the proof. The proof suc-
ceeds if h ≡ (H(r | |req))2

d mod φ(pq) (mod p)q. Note that
due to the knowledge of p and q, the verifier can compute the
proof faster than the prover.

When different proof of works have the same proof difficulty d, they
can be verified in a batch, rather than one by one. Suppose there are
n proof of works, denoted by (gi , d) , 1 6 i 6 n, and corresponding
solutions hi , 1 6 i 6 n. Then batch them as follows, (1) select random
values xi ∈r Z∗X , where X is an integer and smaller than pq, and (2)
check if the following equation holds:

(

n∏
i=1

(gi )
xi )2

d mod φ(pq) ≡
n∏
i=1

(hi )
xi (mod pq)

The chance than an incorrect solution exists is upper-bounded by 1/X.
Note that both the performance gain and the security depend on the
choice of X. A small X provides better performance and lower secur-
ity guarantees, and a large X provides higher security guarantees but
worse performance.

4.8.4 Proof Difficulty

We give a suggestion about how the difficulty of a proof should in-
crease as more ratings are added and how it should decrease over
time. We then analyse the impact of this suggestion.
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Figure 14: Proof Difficulty δ w.r.t. Time Period τ

We want to allow normal users to be able to insert ratings in the sys-
tem without being hindered by the proof of work system. However, at-
tackers should be hindered severely in rapidly building profiles. There-
fore, users who almost constantly insert ratings should have a severe
proof of work difficulty, while users who have long periods of time in
between ratings should not have to do any proof. As a starting point
we take the time period in which the last 10 ratings (of the user) were
inserted and exponentially increase the proof difficulty when this time
period is smaller.

We take the time period τ of the last 10 ratings as the time difference
(in seconds) between the current time, at which the user wants to insert
a rating, and the time when the user inserted his tenth previous rating
(the beginning of the period). If the user did not yet rate 10 items, take
the origin as the beginning of the time period. The difficulty δ (also in
seconds) of a proof of work is then computed as follows:

δ = (60 · 60) · e−τ/(60·60·10)

This formula results in a maximum proof of work difficulty of 1 hour.
The first 10 ratings do not require any proof of work.

An overview of the proof difficulty given a certain time period is
shown in Figure 14. Given this formula, a user that rates 10 items in
a period of 4 days, does not have to do any proof of work. Should the
user rate 10 items over period of 3 days, the difficulty is 3 seconds.
A period of 2 days results in a difficulty of only 30 seconds. When
the period becomes even shorter, the difficulty for the proof of work
increases significantly, a period of 1 day results in a difficulty of 5
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minutes and 27 seconds. Should a user decide to constantly insert rat-
ings, i. e. as fast as possible taking the proof of works into account, the
difficulty will average out around 35 minutes. This will allow the user
to insert around 41 ratings per day. We believe this numbers do not
greatly impact regular users, but severely hampers the rating insertion
speed of attackers.

Alternative methods of computing the difficulty are available. The
most appropriate method is likely to be dependant on the specific scen-
ario and the trade-off between robustness against attackers and burden
for honest users. Therefore, we allow the usage of different difficulty
computation methods.

While there are no technical limitations to using proof of work sys-
tems in non-private recommender systems, it is not advisable to do so.
Proof of work systems can only hinder the rapid building of profiles.
Unlike traditional approaches that detect attack profiles and remove
their influence entirely. Therefore, proof of work systems only delay
the building of a profile that will later be removed anyway. The extra
work does not seem worth it. In the privacy-preserving setting how-
ever, where efficiency and privacy are an issue, proof of work systems
provide a useful tool to delay attackers.

4.9 conclusion

We have provided a framework for a privacy-preserving recommender
system. This framework can cope with malicious users and is therefore
a good candidate for practical deployment. The framework consists of
two non-colluding honest-but-curious servers. Having two servers re-
duces the systems complexity, increases efficiency, and reduces inter-
action with the users to a minimum. Furthermore, the framework can
be instantiated with different types of recommender systems, as long
as they are based around user ratings.

The framework is based around two privacy-preserving protocols.
First, a rating update protocol, where a user gives a new rating to the
servers and the servers privately update the database. Second, a recom-
mendation retrieval protocol, where the user can retrieve the results
of the recommender system in a privacy-preserving manner. We have
given an analysis of the security and privacy of these protocols and an
analysis of the performance of the framework. The performance of our
framework is comparable to solutions with honest-but-curious users,
and more importantly the overhead for the user is small.

We have discussed the most prevalent attack in recommender sys-
tems, the shilling attack, in relation to our privacy-preserving recom-
mender system framework. We concluded that in our setting the cur-
rent counter measures are privacy invasive and inefficient. Therefore,
we offered a defence mechanism that is compatible with our privacy-
preserving framework and that reduces the speed at which attack pro-
files, required for the shilling attack, can be built. However, like with
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non-private recommender systems, the shilling attack remains a con-
cern.



5C O N C L U S I O N

5.1 main research question

The data collection of recommendation service providers potentially
exposes the data of many users. This may lead to privacy breaches
for the users and thus a need for the protection of their privacy. We
chose to focus on secure computation as a means to provide privacy.
We dismissed the introduction of uncertainty as a privacy mechanism
as it reduces the accuracy of recommender systems and provides no
privacy against the service provider. Decentralization was dismissed as
it cannot deal with the constant flux of users. The biggest drawback of
secure computation is its efficiency compared to a non private system,
hence our focus on efficiency. This led to our main research question:

rq : How to construct efficient privacy-enhanced recommender sys-
tems?

As efficiency is not the only hurdle for making the secure computa-
tion of recommender systems practical, we focussed on three specific
practical scenarios to address the (in our view) more pressing issues
for the deployment of privacy-enhanced recommender systems. In the
rest of this concluding chapter we restate the research sub questions
and corresponding scenarios, we discuss the achievements and limita-
tions of our protocols, and we give directions for future work.

5.2 discussion of research questions

In this section, we look at the research sub questions and correspond-
ing protocols. We relate these protocols to the main research question
and we look at both the theoretical and the practical efficiency of the
work in this thesis.

5.2.1 Collaborating Competitors

In the first scenario, competing service providers collaborate to provide
more accurate recommendations for their users, without giving up con-
fidential data about their users. The benefit for the users is better re-
commendations. For the service provider the benefit is more satisfied
users, leading to an improved business. This scenario relates to the
following research sub question:

sq1 : How can competing recommender system service providers col-
laborate?

77
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We refined the scenario of collaborating competitors to collaboration
based on collaborative filtering. Collaborative filtering makes recom-
mendations based on a dataset of user ratings for items. We assumed
that the items held by the two service providers are the same, but that
the users subscribed to the service providers are not. This is a hori-
zontal partitioning of the combined dataset. We further assumed that
the user ratings are available without protection at the service provider
with which the user subscribed. This resulted in a secure protocol for
computing collaborative filtering between the two service providers.
The protocol does not select a neighbourhood (as is common in collab-
orative filtering) to increase efficiency. The protocol utilizes two spe-
cialized sub-protocols for securely computing an absolute value and a
division. From the point of view of the user, the entire protocol can be
pre-computed and recommendations can be received instantly.

Our protocol is limited by the assumption on the dataset. Only ho-
rizontal partitioning of the data is supported. Furthermore, the users
have no privacy protection from the service provider they have sub-
scribed with. Compared to related work, our protocol does not require
any user involvement, making it cheaper for the user. Our protocol
also does not leak any intermediate information during the protocol,
such as a model of the data. Vertical and even arbitrary partitioning of
the dataset remains as a potential improvement for our protocol.

5.2.2 Limited User Availability

The second scenario addresses the constant flux of user availability and
the common requirement of user involvement in secure computations.
In this scenario, users are not required to wait for all other users to get
their recommendations. The corresponding sub question is as follows:

sq2 : How to cope with the limited user availability in recommender
systems?

In the previous scenario, user privacy was sacrificed to avoid issues
with user availability. In this scenario, we did not want to sacrifice pri-
vacy. Instead, our protocol builds upon the trust that is inherent to
the friendship between two users. It further builds upon the fact that
in certain domains, familiarity-based collaborative filtering performs
comparable to similarity-based collaborative filtering. We offer a pro-
tocol in this scenario that requires users to be available and from there
build a protocol that does not require user availability. The trust of a
user in the friendship is expressed through proxy re-encryption and
secret sharing, allowing the service provider to act as an intermediary.

The reliance on the trust of friendship is also a limiting factor. Our
protocol assumes a bi-directional friendship between users. It does not
generalize to a similarity-based collaborative filtering system due to
the (potential) lack of friendship and trust between similar users. Most
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protocols in related work do not offer any option for limited avail-
ability of users, other than waiting for them. The protocols that do
cope with limited user availability are often more inefficient than their
non-coping counterparts. This is opposed to our protocols that have
comparable efficiency in both cases.

5.2.3 Malicious Intent by Users

In the final scenario, the malicious intent of users is taken into account.
As not all users might behave honestly, the recommender system in
this scenario deals with the malicious behaviour of users. This is cap-
tured in the following sub question:

sq3 : How to deal with malicious intent by the users?

We offer a framework that makes use of two non-colluding serv-
ers. The main protocols of the framework allow for the updating of
ratings and the retrieval of recommendations. The part that does the
actual computation of recommendations can be instantiated by differ-
ent types of rating-based recommender systems. Because the user in-
volvement is limited, the burden for the user in participating in the
recommender system is small. Next to offering this framework, we
also discuss the shilling attack. This is an attack that can be executed
by users with malicious intent, but is not covered by the cryptographic
definition of a malicious user. We provide a defence mechanism that
hinders users in rapidly building shilling attack profiles.

Because our framework is based around ratings, the framework can-
not be instantiated with recommender systems that are not based on
ratings (i. e. demographic and knowledge-based recommender systems).
Furthermore, while the framework hinders the construction of shilling
attack profiles, like non-private recommender systems, a full solution
for the shilling attack remains to be found. A framework for recom-
mender systems that can deal with malicious intent of users does not
exist in related work. Even for specific recommender system based on
secure computation, only a few can deal with malicious users.

5.2.4 Efficient Privacy-Enhanced Recommender Systems

The protocols for the three scenarios are all based on secure computa-
tions. We look at their common traits in relation to the main research
question. The main research question is again given:

rq : How to construct efficient privacy-enhanced recommender sys-
tems?

theoretical efficiency The theoretical efficiency of our work
(i. e. the complexity) is based on the requirement imposed by secure
computation that all data that can potentially be relevant has to be
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used in the computation. This means that in the case of collaborative
filtering, the complexity of protocols is in the order of users times
items. Our protocols improve the theoretical efficiency in the following
ways.

The protocol of Chapter 2 processes the information of one service
provider before the secure computation, lowering the overall complex-
ity. The protocols of Chapter 3 limit the number of users used in the se-
cure computation from all possible users, to only the friends of the user.
The difference between the number of users and number of friends is
large and therefore the complexity is greatly lowered. The rating up-
date and retrieval protocols of the framework of Chapter 4 only con-
cern a single user. The complexity of these protocols is only in the
number of items.

The theoretical efficiency indicates a lower bound of the privacy-
enhanced recommender systems. Solutions using generic constructions
for secure computation do not aim to lower the theoretical efficiency
and thus will be less efficient than tailored solutions. While the com-
plexity provides a good first estimate, the efficiency of a construction
is not solely dependent on the complexity of a protocol. The speed of
a protocol is also greatly impacted by its design and implementation.

practical efficiency Through specialized protocols, designed
and optimized for specific scenarios, and fast primitives we managed
to get the runtime of privacy-enhanced recommender systems down
from hours to minutes, and in some cases even to seconds. These
runtime figures are measured by the prototype implementations that
we wrote in C++.

Table 10 shows an overview of the implementation of the primitives
used in the thesis. The number of lines of code and the used libraries
are given. The libraries are GMP1 (GNU Multiple Precision Arithmetic
Library) and FLINT2 (Fast Library for Number Theory). For a descrip-
tion of the primitives, check the chapter in which they are used, or
consult the references. All primitive implementations have a common
structure, are written by us, and have undergone extensive functional-
ity tests. The code for the Brakerski and Vaikuntanathan [21] primitive
was co-developed by C.T. Bösch. The runtime of the prototypes is im-
pacted by the choice of cryptographic primitives, its implementation,
and its parameters. For the parameters, there is a balance between
speed and security. Bad implementations and wrong parameters can
even lead to invalid calculations, thus destroying the functionality of
the recommender system.

Table 11 shows an overview of the code for the prototypes of the pro-
tocols designed in this thesis. The number of lines of code, the execut-
able size, and the used primitive are given for the prototypes of each
chapter and for the instantiation of our framework from Chapter 4

1 http://gmplib.org/
2 http://www.flintlib.org/
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Table 10: Overview of the implementation of cryptographic primitives

Primitive Lines of code Libraries

Paillier [71] ~380 GMP

Bresson et al. [22] ~480 GMP

Brakerski and Vaikuntanathan [21] ~700 FLINT

Table 11: Overview of the implementation of the prototypes of our protocols

Protocol Lines of code Executable size Primitive

Chapter 2 ~750 171.3 kB [71]

Chapter 3 ~1050 38.1 kB & 42.1 kB [21]

Chapter 4, main ~800 25.8 kB & 22.1 kB [22]

Chapter 4, [38] ~1600 43.7 kB [22]

with the work of Erkin et al. [38]. For the instantiation, our code is a
modified version of the code written by Erkin et al. For the other pro-
tocols, all code is written by us. The primitive and prototype sources
will be made available publicly online3. Our protocols do not reduce
the accuracy of the recommendations and achieve a level of privacy
which is equal to confidentiality. As the protocols do not leak the data
or intermediate information, the user can be sure that his data will not
be abused for other purposes.

While these prototypes bring the runtime of solutions to manageable
times, they are only prototypes. Actual solutions should be made more
robust and are likely to run under less favourable conditions. However,
significant improvements can be made by introducing threading to
the prototypes as many operations can be parallelized. Furthermore,
cloud computing can increase the amount of resources available to the
entities running the solutions.

5.3 comparison with state of the art

To investigate the impact of our research, we compare our protocols to
the state of the art. The state of the art is given by the work of Basu et
al. [17], Canny [28], and Erkin et al. [38]. These research papers present
protocols based on secure computation and appear in the related work
section of all our chapters. Basu et al. [17] provide a secure protocol
for collaborating competitors to compute a model-based collaborative
filtering system based on the slope one predictor. Multiple service pro-
viders can based on their own data collaboratively compute the model,

3 http://scs.ewi.utwente.nl/other/jeckmanscode/
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and based on this model compute predictions. The used cryptographic
primitive is a threshold version of Paillier [33]. Canny [28] proposes
a model-based collaborative filtering system based on singular value
decomposition. Canny assumes a peer-to-peer setting with a central
server just for storage of values (with integrity) and as a global source
of random values. To handle malicious peers threshold El-Gamal en-
cryption [36] and zero-knowledge-proofs [42] are used. Erkin et al. [38]
propose a memory-based collaborative filtering system that copes with
the unavailability of users by adding a second non-colluding server.
One server holds the encrypted data and the other server holds the
key. Data packing (multiple values in one encryption) is used to in-
crease efficiency. The used cryptographic primitive is Paillier [71].

Table 12 shows how our protocols relate to the state of the art. All
the protocols are compared based on the assumptions that are made
on the user and the service provider (server), the privacy that is offered
against other users and the service provider, and the efficiency of initial
computations to be done before recommendation (pre-computation)
and of the computation of the recommendation itself. These protocols
are comparable as the assumptions made are similar, privacy loss is
always defined in terms of data leakage, and the setup to benchmark
timing results is comparable. The exception is the timing information
given by Canny [28], which has been updated to current standards. A
brief explanation of uncommon terms used in the table follows. No
assumptions on the user means that the service provider has plaintext
access to the information of the user. When the protocol is made for
competing service providers, the privacy against the other service pro-
viders is given instead of other users (other servers:). Assuming that a
user is unavailable implies that users can be offline during the compu-
tation of a recommendation for another user. The opposite, available,
implies that users should be online to contribute their data during key
phases of the protocol. The model of a model-based collaborative fil-
tering approach is denoted by CF model. WORM storage stands for
write-once-read-many storage, where data can be written to the stor-
age once and not be changed any more, but without restrictions on the
number of read operations. A server that acts as a trusted source of
global random data is denoted by random source.

As can be seen from the table, our protocols improve upon the state
of the art. The protocol of Chapter 2 has better privacy guarantees and
improved efficiency (most notably in the pre-computation) compared
to the work of Basu et al. [17], while having the same assumptions
on the user and service provider. The offline protocol of Chapter 3,
compared to the work of Erkin et al. [38], makes fewer assumptions
on the server, while having similar privacy protection and efficiency.
The framework of Chapter 4 makes fewer assumptions on the user,
compared to the work of Canny [28] and Erkin et al. [38], and is the
first to provide privacy of the user against the service provider, while
only assuming a malicious and unavailable user. However, the work
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of Canny makes fewer assumptions about the server. The privacy pro-
tection of our framework is better than that of Canny and Erkin et al.
The protocol of Canny requires heavy pre-computation to create the
model (and to keep it up to date), this is somewhat balanced out by
the fact that creating a recommendation is very fast as there are no
secure computations involved at this stage. Our framework and the
protocol of Erkin et al. both require less time for pre-computation, but
more for the actual recommendation. In the case of our framework it
is even dependent on the specific recommender system instantiation,
but it is unlikely to be faster than the protocol of Canny due to the
usage of cryptography during recommendation.

At the beginning of this thesis we set out to encourage deployment
of privacy-enhanced recommender systems. This table can help ser-
vice providers choose an appropriate recommender system based on
their needs. All protocols in the table allow for privacy-enhanced col-
laborative filtering. Furthermore, the protocols in this thesis should
be implementable without many issues, as they are designed to avoid
complex operations. For specific scenarios that are not detailed in this
thesis, the design methods for our protocols point others to problem
areas and optimization opportunities. Furthermore, sub-protocols can
be reused and protocol specifics can be tweaked as needed.

When such privacy-enhanced recommender systems are deployed,
this will benefit users everywhere, as recent revelations reveal that
mass surveillance is getting more and more common. In areas where
privacy is a must (e. g. healthcare), our protocols bring new functional-
ities, leading to improved services for users.

5.4 future work directions

While the efficiency of privacy-enhanced recommender systems has
been advanced significantly in this thesis, there is still room for im-
provement. Not only might protocols be made even faster, attention
should also be paid to lowering the overall complexity, and thus im-
proving scalability. This efficiency line of research is ongoing and might
never be completely solved.

In this thesis, we explicitly chose three scenarios to work on. But
other scenarios exist, such as privately updating the knowledge base
in knowledge-based recommender systems, or privately selecting the
proper demographic and associated recommendations in a demographic
recommender system. Tackling other scenarios that require privacy-
enhanced recommender systems is left as future work. It is also inter-
esting to investigate slightly different scenarios, to the ones presented
in this thesis. We use trust in friendship to cope with limited user avail-
ability, but other avenues of trust exist (e. g. co-workers, communities)
and can lead to a similar scenario. While we deal with malicious users,
a scenario where also the malicious intent by service providers is dealt
with remains.
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In the area of privacy, we chose to focus on confidentiality. However,
information privacy is also related to control. The control for the user
to chose the terms for his data usage. Would it be possible to build
such control into the secure computation protocols for recommender
systems? As an example, consider that the user has expressed that his
ratings be deleted after one year. How can the service provider keep
track of this one year, when he is not allowed to know which item the
user is rating at a given point?

5.5 final words

In this thesis the state of the art in secure computation for recom-
mender systems has been improved, with practical scenarios being
tackled. It brings us closer to the deployment of recommender sys-
tems that respect the privacy of its users. In this digital age, privacy
becomes increasingly important and is not something that should just
be given up. Luckily, the potential for secure computation to be used
for practical applications is ever increasing.
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THESIS PROPOSITIONS 

1. Secure two-party computation computes 
functions with limited overhead, until you have to 
compare two values. Then the overhead quickly 
grows beyond a practical limit. (Chapter 4) 

2. Privacy is about giving a user control over his 
data, privacy policies are about giving that control 
to the service provider. (General) 

3. Additive blinding of values often results in simpler 
solutions compared to multiplicative blinding. 
(Chapter 3) 

4. Service providers do not let company secret 
information leave their network, so similarly users 
should not give their private information to 
service providers or other unfamiliar entities. 
(General) 

5. Prototyping not only gives performance estimates 
to the reader, it also increases the understanding 
of the researcher. (Chapter 5) 

6. Cars get you from A to B. Good cars get you from 
A to B fast. Great cars just get you into trouble. 
(Redline, 2007) 
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